研究生: |
夏宇群 Hsia, Yu Chun |
---|---|
論文名稱: |
以硼酸為中子捕獲治療藥物於腫瘤治療之作用機制探討 Mechanism of Action Analysis for Boric Acid-Mediated Neutron Capture Therapy of Cancer |
指導教授: |
莊永仁
Chuang, Yung Jen |
口試委員: |
周鳳英
Chou, Fong In 楊家銘 Yang, Chia Min |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 硼中子捕獲治療 、硼酸 |
外文關鍵詞: | BA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼中子捕獲治療(BNCT)為目前正在進行臨床實驗的新式放射性腫瘤治療方法。當硼-10被送入腫瘤細胞後,在中子照射時會捕捉中子,產生核反應裂解成具有高能的分子,進而殺死腫瘤細胞,對於腫瘤周圍的一般正常細胞卻只有甚少或者無負面影響,目前此治療已被應用於多種癌症的治療上。
2009年國立清華大學周鳳英教授實驗室發現除了現今已被運用於BNCT治療上的borophenylalanine (BPA)跟borocaptate (BSH)兩種藥物外,硼酸也可以做為硼的攜帶藥物,並且可能做為BNCT治療肝腫瘤的良好硼藥物。不過目前對於硼酸送入癌細胞的機制,以及調節肝腫瘤及周邊正常細胞吸收硼酸具差異性的原因,尚未有完整的研究。
文獻指出,腫瘤微環境,例如癌細胞表面醣蛋白的特異性分佈與表現、醣類代謝活性、及微環境中的酸鹼度會與一般正常肝組織的細胞不同,而硼酸也在一些研究中被證實可以與醣類結合形成化合物。基於上述原因,我們推測在硼酸為藥物的BNCT治療下,造成腫瘤與一般細胞吸收硼-10的差異性可能是因為腫瘤與一般細胞的微環境不同,導致腫瘤可以吸收較多的硼-10。實驗結果顯示,當環境中含有比較高的葡萄糖,或微環境酸鹼值偏酸時,可能促進肝癌細胞吸收硼-10。
另外,為了加速臨床前研究的相關藥理分析,我們也致力建立新式斑馬魚BNCT研究平台。對於使斑馬魚體內發生腫瘤,我們嘗試將老鼠黑色素瘤細胞B16-F10進行異種轉殖入斑馬魚體,另外也嘗試使用高度表現黑色素瘤致癌基因的轉殖基因癌症魚,來取得可產生膠質黑色素瘤的癌症魚。我們也確認了斑馬魚可以透過眼窩注射傳遞及吸收硼酸藥物,並設計了固定裝置盤,使斑馬魚可以在BNCT的照射過程中維持麻醉及存活。這個新式的癌症斑馬魚平台在未來可以幫助我們加速以硼酸為藥物的BNCT轉譯研究。
Boron neutron capture therapy (BNCT) is a targeted radiation therapy under clinical trial in Taiwan. Boron-10 delivered into the tumor cells disintegrates after capturing a neutron, and the high energy heavy charged particles produced from the nuclear event destroy cancer cells, with only marginal damage to the surrounding normal tissues.
BNCT has been used in clinical trials to treat various types of cancers. In 2009, Prof. Fong-In Chou of National Tsing Hua University found, in addition to borophenylalanine (BPA) and borocaptate (BSH), boric acid (BA) could also be the boron carrier for BNCT. Specifically, boric acid could be a promising agent for BNCT treatment of hepatocellular carcinoma (HCC). However, the underlying mechanism that influence tumor to normal tissue (T/N) ratio of the BA uptake and the transport process is still unclear.
There are numerous reports showing that tumor microenvironment is different from the surrounding normal cells, including the glycoprotein profile, glucose metabolism and microenvironment pH value. Other reports also show that BA could form complexes with carboxylates, which involve covalent interactions that are reversible in aqueous solution. For these reasons, we hypothesized the differences between tumor and normal cells microenvironment may cause differential uptake of boron/BA into the liver cancer cells prior neutron irradiation. Consequently, our experimental data implied glucose metabolic condition and acidic environment might regulate the uptake of boron/BA by the liver cancer cells.
Meanwhile, in order to accelerate the preclinical study of BA-mediated BNCT in established a zebrafish xenograft model with mouse melanoma cell line B16-F10 and adapted a transgenic zebrafish line that could develop spontaneous melanoma. We demonstrated that zebrafish could absorb boron in the delivery form of BA by orbital injection. A holding device was developed to immobilize the zebrafish during neutron irradiation. This novel zebrafish BNCT platform shall help us to understand the BA-mediated BNCT mechanism and speed up its translational application in the future.
1. A Guide to Cancer Surgery 2014; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/003022-pdf.pdf.
2. A Guide to Chemotherapy. 2015; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/003025-pdf.pdf.
3. A Guide to Radiation Therapy 2014; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/003028-pdf.pdf.
4. Targeted Therapy. 2013; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/003024-pdf.pdf.
5. Barth, R.F., et al., Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol, 2012. 7: p. 146.
6. Lin, S.Y., et al., Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. Anticancer Res, 2013. 33(11): p. 4799-809.
7. Stewart, B.W., et al., World cancer report 2014. 2014, Lyon, France
Geneva, Switzerland: International Agency for Research on Cancer
WHO Press. xiv, 630 pages.
8. CANCER REGISTRY ANNUAL REPORT. 2012; Available from: http://www.hpa.gov.tw/BHPNet/Web/Stat/StatisticsShow.aspx?No=201504290001.
9. Beasley, R.P., et al., Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet, 1981. 2(8256): p. 1129-33.
10. Wong, C. and K. Goh, Chronic hepatitis B infection and liver cancer. Biomed Imaging Interv J, 2006. 2(3): p. e7.
11. Mittal, S. and H.B. El-Serag, Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol, 2013. 47 Suppl: p. S2-6.
12. Chung, Y.L., et al., Sublethal irradiation induces vascular endothelial growth factor and promotes growth of hepatoma cells: implications for radiotherapy of hepatocellular carcinoma. Clin Cancer Res, 2006. 12(9): p. 2706-15.
13. Bellissimo, F., et al., Diagnostic and therapeutic management of hepatocellular carcinoma. World J Gastroenterol, 2015. 21(42): p. 12003-21.
14. Waller, L.P., V. Deshpande, and N. Pyrsopoulos, Hepatocellular carcinoma: A comprehensive review. World J Hepatol, 2015. 7(26): p. 2648-63.
15. Bollag, G., et al., Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010. 467(7315): p. 596-9.
16. Kwong, L.N. and M.A. Davies, Navigating the therapeutic complexity of PI3K pathway inhibition in melanoma. Clin Cancer Res, 2013. 19(19): p. 5310-9.
17. Menendez, P.R., et al., BNCT for skin melanoma in extremities: updated Argentine clinical results. Appl Radiat Isot, 2009. 67(7-8 Suppl): p. S50-3.
18. Chou, F.I., et al., Suitability of boron carriers for BNCT: accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA. Appl Radiat Isot, 2009. 67(7-8 Suppl): p. S105-8.
19. Yang, C.H., et al., Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels. Appl Radiat Isot, 2015. 106: p. 176-80.
20. Dordas, C. and P.H. Brown, Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes. Biol Trace Elem Res, 2001. 81(2): p. 127-39.
21. Pappin, B., M.J. Kiefel, and T.A. Houston, Boron-Carbohydrate Interactions, in Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology, C.F. Chang, Editor. 2012: InTech. p. 37-54.
22. Ko, Y.H., P.L. Pedersen, and J.F. Geschwind, Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett, 2001. 173(1): p. 83-91.
23. Hamanaka, R.B. and N.S. Chandel, Targeting glucose metabolism for cancer therapy. J Exp Med, 2012. 209(2): p. 211-5.
24. Wang, Y., et al., A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater, 2014. 13(2): p. 204-12.
25. Effects of temperature and pH on cell permeability & effects of substrate concentration on enzymes in proteins lab answers.; Available from: http://schoolworkhelper.net/effects-of-temperature-and-ph-on-cell-permeability-effects-of-substrate-concentration-on-enzymes-in-proteins-lab-answers/.
26. Ng, I.O., et al., Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Am J Clin Pathol, 2000. 113(3): p. 355-63.
27. Cervelli, T., et al., Effects of single and fractionated low-dose irradiation on vascular endothelial cells. Atherosclerosis, 2014. 235(2): p. 510-8.
28. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67.
29. Konantz, M., et al., Zebrafish xenografts as a tool for in vivo studies on human cancer. Hematopoietic Stem Cells Viii, 2012. 1266: p. 124-137.
30. Santoriello, C., et al., Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One, 2010. 5(12): p. e15170.
31. Wyszynski, F.J., et al., Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nat Chem, 2012. 4(7): p. 539-46.
32. Song, W., et al., N-glycoproteomics in plants: perspectives and challenges. J Proteomics, 2011. 74(8): p. 1463-74.
33. Garbarino, J.R. and H.E. Taylor, Inductively coupled plasma-mass spectrometric method for the determination of dissolved trace elements in natural water, in Open-File Report. 1996.
34. Santoriello, C., et al., Highly penetrant melanoma in a zebrafish model is independent of ErbB3b signaling. Pigment Cell Melanoma Res, 2012. 25(2): p. 287-9.
35. Sah, R.N. and P.H. Brown, Isotope ratio determination in boron analysis. Biol Trace Elem Res, 1998. 66(1-3): p. 39-53.
36. Dell, A. and H.R. Morris, Glycoprotein structure determination by mass spectrometry. Science, 2001. 291(5512): p. 2351-6.
37. Deng, D., et al., Molecular basis of ligand recognition and transport by glucose transporters. Nature, 2015. 526(7573): p. 391-6.
38. Wang, J., et al., Aquaporins as diagnostic and therapeutic targets in cancer: How far we are? Journal of Translational Medicine, 2015. 13.
39. Guo, X., et al., Prognostic value of combined aquaporin 3 and aquaporin 5 overexpression in hepatocellular carcinoma. Biomed Res Int, 2013. 2013: p. 206525.
40. Dordas, C. and P.H. Brown, Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant and Soil, 2001. 235(1): p. 95-103.