簡易檢索 / 詳目顯示

研究生: 佘銘軒
論文名稱: 嵌段共聚物奈米薄膜之微結構取向與大範圍有序化及其應用
Controlled Orientation and Long-Range Ordering of Nanostructured Block Copolymer Thin Films and Their Applications
指導教授: 何榮銘
口試委員: 林江珍
孫亞賢
童世煌
曾繁根
陳信龍
蔣酉旺
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 118
中文關鍵詞: Thin filmOrientationBlock copolymerGyroidHybrids
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention in the past decade, and a variety of appealing applications in different research areas have been suggested by using the nanostructured thin films. To create useful BCP thin films for practical uses, controlling the orientation of self-assembled nanostructures is essential. In this study, we present a new method for forming well-ordered and oriented nanostructured thin films on Si wafer with a functionalized SiO2 surface, using homopolymers with hydroxyl group at the chain end to functionalize SiO2 surface, to give neutral substrate for the self-assembly of BCPs. To demonstrate the feasibility of suggested approaches, a series of degradable BCPs, polystyrene-b-poly(L-lactide) (PS-PLLA) with hexagonally packed cylinder and double gyroid phases, are used as model systems for creating nanostructured thin films with controlled orientation and long-range order of BCP nanostructures. In contrast to the use of random BCPs, a neutral substrate is formed by functionalizing a SiO2 substrate with hydroxyl-terminated PS (PS-OH) followed by hydroxyl-terminated PLLA (PLLA-OH). Accordingly, the surface properties can be fine-tuned by controlling the ratio of grafted PS-OH to PLLA-OH without the prerequisite of the synthesis of random BCPs. Subsequently, different methods such as thermal and solvent annealing are utilized to exploit the fabricated neutral substrate resulting from the grafting of mixed PS-OH and PLLA-OH brushes for creating expected nanostructured thin films.
    For cylinder-forming PS-PLLA thin film, well-ordered and perpendicular PLLA cylinders in PS-PLLA thin film can be formed by using the neutral substrate for thermal annealing. Surprisingly, the orientation that is driven by the neutral substrate is limited in that the effective length of orienting cylinders is less than twice the inter-domain spacing. By contrast, thermal annealing at high temperature can yield a neutral air surface, rendering perpendicular PLLA cylinders that stand sub-µm from the air surface. Consequently, the neutral substrate can be used to enable truly film-spanning perpendicular cylinders in films to be fabricated using the high-temperature thermal treatment. Most interestingly, the perpendicular cylinders can be laterally ordered by further increasing the annealing temperature to increase the mobility of the polymer chains for reoganization. By contrast, for gyroid-forming PS-PLLA thin film, the morphology remains as disorder-like texture after thermal annealing due to insufficient time for ordering. Note that degradation of PLLA will occur after long-time thermal annealing. Alternatively, long-range ordering of oriented gyroid thin films can be achieved by solvent annealing using appropriate solvents. With twice of integral gyroid lattice constant for sample thickness from swelling by solvent annealing to satisfy the criteria of commensuration, well-defined nanostructured thin films can be obtained. Interesting morphological evolution from disorder to gyroid and finally cylinder can be found while using a partially selective solvent for PS to anneal the PS-PLLA thin film. Moreover, during transition, characteristic crystallographic (211)G plane in the gyroid thin film parallel to the air surface can be observed, and will gradually transform into the (110)G plane due to the preferential segregation of one block to the surface that affects the relative amount of each component on the air surface. Similar morphological evolution can be found in the neutral substrate at which the PS chains on functionalized substrate will be stretched to preferentially reach the PS selective solvent while the PLLA chains will recoil from the solvent due to the effect of solvent selectivity. To acquire a thin-film sample with thermodynamically stable gyroid morphology, a non-preferential solvent should be used for solvent annealing to enable long-range ordering of gyroid thin film with the (211)G plane parallel to the air surface and also the substrate. The ability to achieve oriented PS-PLLA gyroid thin films with uniform surface opens up appealing applications in nanotechnology.
    For practical applications, by taking advantage of the degradable character of ester groups for PLLA blocks in PS-PLLA, nanoporous polymer thin films can be fabricated by hydrolyzing self-assembled PS-PLLA nanostructures, and then used as templates for the fabrication of nanohybrid materials with promising applications in electronic, optical, and magnetic devices. The fabrication of nanohybrids with different constituent components and structures can be achieved by using the templates for electroplating reaction. Consequently, nanostructured conductive polymers can be acquired by templated electrochemical polymerization through the combination of pulse electroplating method with the control of micro current. Similar approach can be exploited for the fabrication of PS/Au nanohybrid thin films by using Au precursors for templated electroplating.


    The fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention in the past decade, and a variety of appealing applications in different research areas have been suggested by using the nanostructured thin films. To create useful BCP thin films for practical uses, controlling the orientation of self-assembled nanostructures is essential. In this study, we present a new method for forming well-ordered and oriented nanostructured thin films on Si wafer with a functionalized SiO2 surface, using homopolymers with hydroxyl group at the chain end to functionalize SiO2 surface, to give neutral substrate for the self-assembly of BCPs. To demonstrate the feasibility of suggested approaches, a series of degradable BCPs, polystyrene-b-poly(L-lactide) (PS-PLLA) with hexagonally packed cylinder and double gyroid phases, are used as model systems for creating nanostructured thin films with controlled orientation and long-range order of BCP nanostructures. In contrast to the use of random BCPs, a neutral substrate is formed by functionalizing a SiO2 substrate with hydroxyl-terminated PS (PS-OH) followed by hydroxyl-terminated PLLA (PLLA-OH). Accordingly, the surface properties can be fine-tuned by controlling the ratio of grafted PS-OH to PLLA-OH without the prerequisite of the synthesis of random BCPs. Subsequently, different methods such as thermal and solvent annealing are utilized to exploit the fabricated neutral substrate resulting from the grafting of mixed PS-OH and PLLA-OH brushes for creating expected nanostructured thin films.
    For cylinder-forming PS-PLLA thin film, well-ordered and perpendicular PLLA cylinders in PS-PLLA thin film can be formed by using the neutral substrate for thermal annealing. Surprisingly, the orientation that is driven by the neutral substrate is limited in that the effective length of orienting cylinders is less than twice the inter-domain spacing. By contrast, thermal annealing at high temperature can yield a neutral air surface, rendering perpendicular PLLA cylinders that stand sub-µm from the air surface. Consequently, the neutral substrate can be used to enable truly film-spanning perpendicular cylinders in films to be fabricated using the high-temperature thermal treatment. Most interestingly, the perpendicular cylinders can be laterally ordered by further increasing the annealing temperature to increase the mobility of the polymer chains for reoganization. By contrast, for gyroid-forming PS-PLLA thin film, the morphology remains as disorder-like texture after thermal annealing due to insufficient time for ordering. Note that degradation of PLLA will occur after long-time thermal annealing. Alternatively, long-range ordering of oriented gyroid thin films can be achieved by solvent annealing using appropriate solvents. With twice of integral gyroid lattice constant for sample thickness from swelling by solvent annealing to satisfy the criteria of commensuration, well-defined nanostructured thin films can be obtained. Interesting morphological evolution from disorder to gyroid and finally cylinder can be found while using a partially selective solvent for PS to anneal the PS-PLLA thin film. Moreover, during transition, characteristic crystallographic (211)G plane in the gyroid thin film parallel to the air surface can be observed, and will gradually transform into the (110)G plane due to the preferential segregation of one block to the surface that affects the relative amount of each component on the air surface. Similar morphological evolution can be found in the neutral substrate at which the PS chains on functionalized substrate will be stretched to preferentially reach the PS selective solvent while the PLLA chains will recoil from the solvent due to the effect of solvent selectivity. To acquire a thin-film sample with thermodynamically stable gyroid morphology, a non-preferential solvent should be used for solvent annealing to enable long-range ordering of gyroid thin film with the (211)G plane parallel to the air surface and also the substrate. The ability to achieve oriented PS-PLLA gyroid thin films with uniform surface opens up appealing applications in nanotechnology.
    For practical applications, by taking advantage of the degradable character of ester groups for PLLA blocks in PS-PLLA, nanoporous polymer thin films can be fabricated by hydrolyzing self-assembled PS-PLLA nanostructures, and then used as templates for the fabrication of nanohybrid materials with promising applications in electronic, optical, and magnetic devices. The fabrication of nanohybrids with different constituent components and structures can be achieved by using the templates for electroplating reaction. Consequently, nanostructured conductive polymers can be acquired by templated electrochemical polymerization through the combination of pulse electroplating method with the control of micro current. Similar approach can be exploited for the fabrication of PS/Au nanohybrid thin films by using Au precursors for templated electroplating.

    Abstract I Contents IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Self-assembly of Block Copolymers (BCPs) 1 1.2 Self-assembly of BCP Thin Films 5 1.2.1 Effects of surface fields on BCP thin films 6 1.2.2.1 Substrate effects 6 1.2.2.2 Air surface effects 7 1.2.2 Confinement effects on BCP thin films 8 1.2.3 Mutual effects of substrate and confinement on BCP thin films 10 1.3 Nanostructured Thin Films from BCP Self-assembly 11 1.3.1 Oriented nanostructured thin films from BCP self-assembly 11 1.3.1.1 Temperature gradient-induced orientation 12 1.3.1.2 Electric field-induced orientation 12 1.3.1.3 Crystallization-induced orientation 13 1.3.1.4 Shear-induced orientation 14 1.3.1.5 Surface-induced orientation .15 1.3.1.6 Solvent-annealing-induced orientation 16 1.3.1.7 Solvent-evaporation-induced orientation 18 1.3.2 Directed self-assembly 20 1.3.2.1 Graphoepitaxy 21 1.3.2.2 Chemical patterned surface 23 1.3.3 Nanoporous thin films from degradable BCPs 25 1.3.3.1 Dry process 25 1.3.3.2 Wet process 29 1.4 Nanohybrids from Nanoporous Thin Films and Their Applications 32 1.4.1 Capillary forces for pore-filling process 33 1.4.2 Electroplating 36 1.4.2.1 Electroplating inorganic metal within nanoporous templates 38 1.4.2.2 Electropolymerization of conductive polymer within nanoporous templates 39 Chapter 2 Objectives 42 Chapter 3 Experimental Methods 44 3.1 Materials 44 3.2 Experimental Section 45 3.2.1 Preparation of functionalized SiO2 with mixed homopolymer brushes. 45 3.2.2 Surface energy calculation 45 3.2.3 Thermal annealing for cylinder-forming PS-PLLA thin film …..….46 3.2.4 Solvent annealing for gyroid-froming PS-PLLA thin film …..….46 3.2.5 Electropolymerization of aniline .47 3.2.6 Electroplating of gold .47 3.3 Instrumentation .47 Chapter 4 Results and Discussion .50 4.1 Long-Range Ordering of Cylinder-forming PS-PLLA Thin Films by Thermal Annealing 50 4.1.1 Formation of oriented PLLA cylinders in PS-PLLA via solvent evaporation .51 4.1.2 Functionalization of SiO2 .54 4.1.3 Surface analysis of functionalized SiO2 .55 4.1.4 Orientation induced by functionalized surface .58 4.1.5 Orientation induced by thermal annealing. .61 4.1.6 Induced long-range perpendicular orientation .65 4.1.7 Improvement of lateral packing .67 4.2 Oriented Gyroid-forming PS-PLLA Thin Films by Solvent Annealing .71 4.2.1 Morphologies of spin-coated BCP thin films .71 4.2.2 Morphological evolution as a function of solvent annealing time.. .73 4.2.3 Induced orientation from air surface. .76 4.2.4 Induced orientation from functionalized substrate. .81 4.2.5 Annealing with a non-preferential solvent.. .84 4.3 Formation of Conductive Polyaniline Nanoarrays 87 4.3.1 Templates from degradable BCP thin films .88 4.3.2 Optimization of electrolyte solution for pore-filling .89 4.3.3 Pulse electroplating and the control of micro current .88 4.4 Formation of Well-Ordered Gold Nanoarrays 97 4.4.1 Well-ordered nonoporous thin films from cylinder-forming BCP 98 4.4.2 Pulse electroplating and control of micro current for electrodeposition 99 Chapter 5 Conclusions 103 Chapter 6 References 106

    1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
    7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
    8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
    9. Lodge, T. P. Macromol. Chem. Phys. 2003, 204, 265.
    10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
    15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
    16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    17. Leibler, L. Macromolecules 1980, 13, 1602.
    18. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    19. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    20. Cochran, E. W.; Garcia-Cervera, C. J.; Fredrickson, G. H. Macromolecules 2006, 39, 2449.
    21. Kim, J. K.; Lee, J. I.; Lee, D. H. Macromol. Res. 2008, 16, 267.
    22. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. Science 2009, 323, 1030.
    23. Hamley, I. W. Prog. Polym. Sci. 2009, 34, 1161.
    24. Matsen, M. W.. J. Chem. Phys. 1997, 106, 7781.
    25. Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang,T.; Ree, M. Macromolecules 2005, 38, 4311.
    26. Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Macromolecules 2005, 38, 10532.
    27. Park, H. W.; Im, K.; Chung, B.; Ree, M.; Chang, T.; Sawa, K.; Jinnai, H. Macromolecules 2007, 40, 2603.
    28. Park, H. W.; Jung, J.; Chang, T. Macromol. Res. 2009, 17, 365.
    29. Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.;
    Magerle, R. J. Chem. Phys. 2004, 120, 1127.
    30. Olszowka, V.; Tsarkova, L.; Boker, A. Soft Matter 2009, 5, 812.
    31. Huang, E.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Macromolecules 1998, 31, 7641.
    32. Xu, T.; Hawker, C. J.; Russell, T. P. Macromolecules 2005, 38, 2802.
    33. Ryu, D. Y.; Wang, J. Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P. Macromolecules 2007, 40, 4296.
    34. Ham, S.; Shin, C.; Kim, E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker, C. J. Macromolecules 2008, 41, 6431.
    35. Albert, J. N. L.; Baney, M. J.; Stafford, C. M.; Kelly, J. Y.; Epps, T. H. G; ACS Nano 2009, 3, 3977.
    36. Ramanathan, M.; Nettleton, E.; Darling, S. B. Thin Solid Films 2009, 517, 4474.
    37. Russell, T. P.; Coulon, G.; Deline, V. R.; Miller, D. C. Macromolecules 1989, 22, 4600.
    38. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan P. Macromolecules 2009, 42, 4896.
    39. Han, E.; Stuen, K. O.; La, Y. H.; Nealey, P. F.; Gopalan, p Macromolecules 2008, 41, 9090.
    40. Mansky, P.; Russell, T. P.; Hawker, C. J.; Pitsikalis, M.; Mays, J., Macromolecules 1997, 30, 6810.
    41. Huang, E.; Russell, T. P.; Harrison C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Macromolecules 1998, 31, 7641.
    42. Albert, J. N. L. ; Baney, M. J.; Stafford, C. M.; Kelly, J. Y.; Epps, T. H. ACS Nano 2009, 3, 3977.
    43. Shin, C.; Ahn, H. ; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W. Russell, T. P. Macromolecules 2008, 41, 9140.
    44. Fasolka, M. J., and Mayes, A. M., Annu. Rev. Mater. Res. 2001, 31, 323.
    45. Han, E., Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan, P, Macromolecules 2009, 42, 4896.
    46. Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K. Phys. Rev. Lett. 1997, 79, 237.
    47. Xuan, Y.; Peng, J.; Cui, L.; Wang, H. F.; Li, B. Y.; Han, Y. C. Macromolecules 2004, 37, 7301.
    48. Matsen, M. W. J. Chem. Phys. 1997, 106, 7781.
    49. Segalman, R. A., Mater. Sci. Eng. R Rep. 2005, 48, 191.
    50. Smith, A. P.; Douglas, J. F.; Meredith, J. C.; Amis, E. J.; Karim, A., Phys. Rev. Lett. 2001, 87, 015503.
    51. Niihara, K. I.; Sugimori, H.; Matsuwaki, U.; Hirato, F.; Morita, H.; Doi, M.; Masunaga, H.; Sasaki, S.; Jinnai, H. Macromolecules 2008, 41, 9318.
    52. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phys.Rev.Lett. 2002, 89, 035501.
    53. Hashimoto, T.; Bodycomb, J.; Funaki Y.; Kimishima, K. Macromolecules 1999, 32, 952.
    54. Mita, K.; Takenaka, M.; Hasegawa, H.; Hashimoto, T. Macromolecules 2008, 41, 8789.
    55. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
    56. Thurn-Albrecht, T.; Schotter, J.; Ka¨stle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell T. P. Science 2000, 290, 2126.
    57. Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Boker, A. ACS Nano 2009, 3, 1091.
    58. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
    59. Ho, R. M.; Hsieh, P. Y.; Tseng, W. H.; Lin, C. C.; Huang B. H.; Lotz, B. Macromolecules 2003, 36, 9085.
    60. Park, Y. J.; Kang, S. J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K. J.; Park, C. Macromolecules 2008, 41, 8648.
    61. Keller, A.; Pedemonte E.; Willmouth, F. M. Nature 1970, 225, 385.
    62. Albalak, R. J.; Thomas, E. L. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 37.
    63. Koppi, K. A.; Tirrell M.; Bates, F. S. Phys. Rev. Lett. 1993, 70, 1449.
    64. Chen, Z. R.; Kornfield, J. A.; Smith, S. D.; Grothaus, J. T.; Satkowski, M. M. Science 1997, 277, 1248.
    65. Albalak, R. J.; Capel, M. S.; Thomas E. L. Polymer 1997, 39, 1647.
    66. Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
    67. Hong, Y. R.; Adamson, D. H.; Chaikin, P. M.; Register, R. A. Soft Matter 2009, 5, 1687.
    68. Peters, R. D.; Yang, X. M.; Kim, T. K.; Nealey, P. F. Langmuir 2000, 16, 9620.
    69. Peters, R. D.; Yang, X. M.; Kim, T. K.; Sohn, B. H.; Nealey, P. F. Langmuir 2000, 16, 4625.
    70. Han, E.; In, I.; Park, S. M.; La, Y. H.; Wang, Y.; Nealey, P. F.; Gopalan, P. Adv. Mater. 2007, 19, 4448.
    71. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan, P. Macromolecules 2009, 42, 4896.
    72. Suh, H. S.; Kang, H.; Liu, C. C.; Nealey, P. F.; Char, K. Macromolecules 2010, 43, 461.
    73. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. J. Science 1997, 275, 1458.
    74. Huang, E.; Rockford, L.; Russell T. P.; Hawker, C. J. Nature 1998, 395, 757.
    75. Huang, E.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Macromolecules 1998, 31, 7641.
    76. Ryu, D. Y.; Shin, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P. Science 2005, 308, 236.
    77. Shengxiang J.; Guoliang L.; Zheng F.; Craig, G. S. W.; Himpsel, F. J.; Nealey, P. F. Adv. Mater. 2008, 20, 3054.
    78. Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K. Phys. Rev. Lett. 1997, 79, 237.
    79. Gu, W.; Hong, S. W.; Russell, T. P. ACS Nano 2012, 6, 10250.
    80. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
    81. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; S. H., Russell, T. P. Adv. Mater. 2004, 16, 226.
    82. Kim, S. H; Misner, M. J.; Russell, T. P. Adv. Mater. 2004, 16, 2119.
    83. Knoll, A.; Magerle, R.; Krausch, G. J. Chem. Phys. 2004, 120, 1105.
    84. Cavicchi, K. A.; Russell, T. P. Macromolecules 2007, 40, 1181.
    85. Park, S.; Wang, J. Y.; Kim, B.; Chen, W.; Russell, T. P. Macromolecules 2007, 40, 9059.
    86. Park, S.; Kim, B.; Xu J.; Hofmann, T.; Ocko B. M.; Russell, T. P. Macromolecules 2009, 42, 1278.
    87. Paik, M. Y.; Bosworth, J. K.; Smilges, D. M.; Schwartz, E. L. Andre, X.; Ober, C. K. Macromolecules, 2010, 43, 4253.
    88. Gotrik, K. W.; Hannon, A. F.; Son, J. G.; Keller, B.; Alexander-Katz, A.; Ross, C. A. ACS Nano 2012, 6, 8052.
    89. Albert, J. N. L.; Young, W. S.; Lewis, R. L.; Bogart, T. D.; Smith, J. R.; Epps, T. H. ACS Nano 2012, 6, 459.
    90. Fukunaga, K.; Elbs, H.; Magerle R.; Krausch, G. Macromolecules 2000, 33, 947.
    91. Lin, Z.; Kim, D. H.; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
    92. Temple, K.; Kulbaba, K.; Power-Billard, K. N.; Manners, I.; Leach, A.; Xu, T.; Russell T. P.; Hawker, C. J. Adv. Mater. 2003, 15, 297.
    93. Ho, R. M.; Tseng, W. H.; Fan, H. W.; Chiang, Y. W.; Lin, C. C.; Ko, B. T.; Huang, B. H. Polymer 2005, 46, 9362.
    94. Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505
    95. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
    96. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
    97. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Adv. Mater. 2003, 15, 1599.
    98. Sundrani, D.; Darling, S. B.; Sibener, S. J. Nano Lett. 2004, 4, 273.
    99. Sundrani, D.; Darling, S. B.; Sibener, S. J. Langmuir 2004, 20, 5091.
    100. Jung, Y. S.; Ross, C. A. Nano Lett. 2007, 7, 2046.
    101. Jung, Y. S.; Ross, C. A. Adv. Mater. 2009, 21, 2540.
    102. Jung, Y. S.; Jung, W. C.; Tuller, H. L.; Ross, C. A. Nano Lett. 2008, 8, 3776.
    103. Jung, Y. S.; Jung, W.; Ross, C. A. Nano Lett. 2008, 8, 2975.
    104. Rockford, L.; Mansky, Y. L. P.; Russell, T. P.; Yoon, M.; Mochrie S. G. J. Phys. Rev. Lett. 1999, 82, 2602.
    105. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Nature 2003, 424, 411.
    106. Edwards, E. W.; Montague, M. F.; Solak, H. H.; Hawker, C. J.; Nealey, P. F. Adv. Mater. 2004, 16, 1315
    107. Stoykovich, M. P.; Muller, M.; Kim, S. O.; Solak, H. H.; Edwards, E. W.; de Pablo, J. J.; Nealey, P. F. Science 2005, 308, 1442.
    108. Chan, V. Z. -H.; Thomas, E. L.; Lee, V. L.; Miller, R. D.; Avgeropoulos, A.; Hadjichristidis, N. U.S. Patent Publication No: WO/00/02090.
    109. Jung, Y. S.; Ross, C. A.; Nano Lett. 2007, 7, 2046.
    110. Li, L.; Yokoyama, H. Angew. Chem., Int. Ed. 2006, 45, 6338.
    111. Rider, D. A.; Cavicchi, K. A.; Vanderark, L.; Russell, T. P.; Manners, I. Macromolecules 2007, 40, 3790.
    112. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939.
    113. Chao, C. C.; Wang, T. Z.; Ho, R. M.; Georgopanos, P.; Ageropoulos, A.; Thomas, E. L. ACS Nano 2010, 4, 2088.
    114. Guo, S. W.; Rzayev, J.; Bailey, T. S.; Zalusky, A. S.; Olayo-Valles, R.; Hillmyer, M. A. Chem. Mater. 2006, 18, 1719.
    115. Park, S.; Wang, J. Y.; Kim, B.; Russell, T. P. Nano let. 2008, 8, 1667.
    116. Jung, Y. S.; Jung, W.; Ross, C. A. Nano Lett. 2008, 7, 2975.
    117. Singh, D. K.; Krotkov, R. V.; Xiang, H. Q.; Xu, T.; Russell, T. P. Nanotechnology 2008, 19, 245305.
    118. Chao, C. C.; Ho, R. M.; Georgopanos, P.; Ageropoulos, A.; Thomas, E. L. Soft Matter 2010, 6, 3582.
    119. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787.
    120. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    121. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    122. Ho, R. M.; Tseng, W. H.; Fanc, H. W.; Chianga, Y. W.; Lind, C. C.; Kob, B. T.; Huangd, B. H. Polymer 2005, 46, 9362.
    123. Chan, V. Z. -H., Hoffman, J., Lee, V. L., Iatrou, H., Avgeropoulos, A., Hadjichristidis, N., Miller, R. D., Thomas, E. L. Science 1999, 286, 1716.
    124. Urbas, A. M.; Maldovan, M.; DeRege P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
    125. Jeong, U., Ryu, D. Y., Kim, J. K., Kim, D. H., Russell, T. P., Hawker, C. J. Adv. Mater. 2003, 15, 1247.
    126. Ho, R. M., Chiang, Y. M., Tsai, C. C., Lin., C. C., Ko., B. T., Huang, B. H. J. Am. Chem. Soc. 2004, 126, 2704.
    127. Rzayev, J., Hillmyer, M. A. J. Am. Chem. Soc. 2005, 127, 13373.
    128. Okumura, A.; Nishikawa, Y.; Hashimoto, T. Polymer 2006, 47, 7805.
    129. Tseng, Y. T.; Tseng, W. H.; Lin, C. H.; Ho, R. M. Adv. Mater. 2007, 19, 3584.
    130. Merhari, L. Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications; Springer, New York, 2009.
    131. Lin, Z.; Kim, D. H.; Wu, X. D.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
    132. Lo, K. H.; Tseng, W. H.; Ho, R. M. Macromolecules 2007, 40, 2621.
    133. Lo, K. H.; Chen, M. C.; Ho, R. M.; Sung, H. W. ACS Nano 2009, 3, 2660.
    134. Lo, K. H.; Ho, R. M.; Liao, Y. M.; Hsu, C. S.; Massuyeau, F.; Zhao, Y. C.; Lefrant, S.; Duvail, J. L. Adv. Funct. Mater. 2011, 21, 2729.
    135. Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L. Science 1993, 261, 1316.
    136. Thurn-Albrecht, T., Schotter, J., Kastle, C. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., Russell, T. P. Science 2000, 290, 2126.
    137. Zhang, Q.; Xu, T.; Butterfield, D.; Misner, M. J.; Ryu, D. Y.; Emrick, T.; Russell, T. P. Nano. Lett. 2005, 5, 357.
    138. Tseng, Y. T.; Tseng, W. H.; Lin, C. H.; Ho, R. M. Adv. Mater. 2007, 19, 3584.
    139. Deronzier, A.; Moutet, J. C. Coordination Chemistry Reviews 1996, 147, 339.
    140. Roncali J. Chem. Rev. 1992, 92, 711.
    141. Ambrose, J. F.; Nelson, R. F., J Electrochem. Soc. 1968, 115, 1161.
    142. J. Heinze, in E. Steckhan, Electrochemistry IV 1990.
    143. Deronzier, A. Coordination Chemistry Reviews 1994, 147, 339.
    144. M. Baizer, Electrochemistry 1974, new york.
    145. Cauquis, G.; Cros, J. L.; Genies, M. Bull. Soc. Chim. Fr. 1971, 3765.
    146. Genies, E. M. J. Electroanal. Chem. 1985, 109, 128.
    147. Lee, J. I.; Cho, S. H.; Park, S. M.; Kim, J. K.; Kim, J. K.; Yu, J. W.; Kim, Y. C.; Russell, T. P. Nano Lett. 2008, 8, 2315.
    148. Olayo-Valles, R.; Guo, S.; Lund, M. S.; Leighton, C; Hillmyer, M. A. Macromolecules 2005, 38, 10101.
    149. Ho, R. M.; Chen, C. K.; Chiang, Y. W.; Ko, B. T.; Lin, C. C. Adv. Mater. 2006, 18, 2355.
    150. Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. J. Am. Chem. Soc. 2004, 126, 2704.
    151. Wu, S. Polymer Interface and Adhesion; Marcel Dekker: New York, 1982; Chapter 5.
    152. Owens, D. K.; Wendt, R. C. J. Appl. Polym. Sci. 1969, 13, 1741.
    153. Minko, S.; Patil, S.; Datsyuk, V.; Simon, F.; Eichhorn, K. J.; Motornov, M.; Usov, D.; Tokarev, I.; Stamm, M. Langmuir 2002, 18, 289.
    154. Zuwei, M.; Changyou, G.; Jian, J.; Jiacong, S. Europ. Polym. J. 2002, 38, 2279.
    155. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan, P. Macromolecules 2009, 42, 4896.
    156. Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K. Phys. Rev. Lett. 1997, 79, 237.
    157. Chen, D. J.; Gong, Y. M.; Huang, H. Y.; He, T. B.; Zhang, F. J. Macromolecules 2007, 40, 6631.
    158. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan, P. Macromolecules 2009, 42, 4896.
    159. Olayo-Valles, R.; Guo, S.; Lund, M. S.; Leighton, C; Hillmyer, M. A. Macromolecules 2005, 38, 10101.
    160. Chang, W. J. (2012) Conjugated Polymer Nanoarrays from Templating of Block Copolymer via Electroplating, National Tsing Hua University, Hsinchu.
    161. Xuan, Y.; Peng, J.; Cui, L.; Wang, H. F.; Li, B. Y.; Han, Y. C. Macromolecules 2004, 37, 7301.
    162. Bang J.; Kim B. J.; Stein G. E. ; Russell T. P.; Li, X; Wang J.; Kramer, E. J.; Hawker, C. J. Macromolecules 2007, 40, 7019.
    163. Elbs, H.; Drummer, C.; Abetz, V.; Krausch, G. Macromolecules, 2002, 35, 5570.
    164. Hashimoto T.; Nishikawa Y.; Tsutsumi K. Macromolecules 2007, 40, 1066.
    165. Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang, T.; Ree, M. Macromolecules 2005, 38, 4311.
    166. Bok, H. M.; Shuford, K. L.; Kim, S.; Kim, S. K.; Park, S. Nano Lett. 2008, 8, 2265.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE