簡易檢索 / 詳目顯示

研究生: 江柏賢
Jiang, Bo-Xian
論文名稱: 石墨/環氧樹脂複合材料之機電性質研究
Mechanical and Electrical Properties of Graphite/Epoxy Composites
指導教授: 葉孟考
Yeh, Meng-Kao
戴念華
Tai, Nyan-Hwa
口試委員: 葉孟考
戴念華
蔡佳霖
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 136
中文關鍵詞: 天然石墨膨脹石墨環氧樹脂碳纖維布機械性質雙極板
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環氧樹脂、酚醛樹脂等高分子材料為複合材料常用之基材,但電熱與機械性質不佳,通常得加入補強材料改善之。石墨具有耐高溫、良好之機械性質、及優越之導電性與導熱性等物理性質,比起奈米碳管而言價格更為低廉、也更容易製備。本研究主要使用環氧樹脂和20 μm天然石墨以及膨脹石墨製備天然石墨/環氧樹脂複合材料以及膨脹石墨/環氧樹脂複合材料,並將8層碳纖維加入25 wt%之天然石墨/環氧樹脂製備碳纖維複合材料。改變20 μm天然石墨或膨脹石墨比例,探討20 μm天然石墨或膨脹石墨含量對整體複合材料之機械性質與導電性質之影響,並且利用修正型哈賓-蔡(Halpin-Tsai)方程式嵌合楊氏係數與20 μm天然石墨體積百分比的關係。由實驗結果可知,40 wt%的20 μm天然石墨/環氧樹脂複合材料,在機械性質方面,楊氏係數提升成201.11倍、撓曲模數提升成270.14倍,但拉伸強度降低21.36 %、撓曲強度降低34.65 %。在導電性質方面,體積電阻率從3.14×107 Ω-cm下降至2.57×101 Ω-cm,降低了99.99%;20 wt%膨脹石墨/環氧樹脂複合材料,在機械性質方面,楊氏係數提升成105.07倍、撓曲模數提升成150.91倍,但拉伸強度降低23.88%、撓曲強度降低31.74 %。在導電性質方面,體積電阻率從3.14×107 Ω-cm下降至2.72×103 Ω-cm,降低了99.99%。而8層碳纖維加入25 wt%之天然石墨/環氧樹脂複合材料在機械強度、體積電阻率、氣體滲透度、密度皆符合美國能源局2015年所規範之雙極板標準。在分析方面,建立三維模型,以有限單元套裝軟體ANSYS分析模擬天然石墨/環氧樹脂之等效楊氏係數。


    Mechanical stength, electrical conductivity, thermal conductivity of matrix used in polymeric composite materials are not so good. Graphite with good mechanical properties, low electrical resistivity, high temperature resistance is cheaper than carbon nanotubes. This study used epoxy, 20 μm natural graphite, expanded graphite, and carbon fiber to fabricate natural graphite/epoxy and expanded graphite/ epoxy composites and carbon fiber/natural graphite/epoxy composites. Different percentages, (0, 10, 15, 20, 25, 30, 35, 40 wt%) of natural graphite and (0, 10, 15, 20 wt%) of expanded graphite in composites, was assessed to discuss the effect on their mechanical and electric properties. Modified Halpin–Tsai equation was used to fit the Young’s modulus and flexural modulus of the natural graphite/epoxy composites by adopting an orientation factor and an exponential shape factor in the equation. The results of 40 wt% natural graphite/epoxy composites showed that the Young’s modulus increased 201.11%, the flexural modulus increased 270.14%, the tensile strength decreased 21.36%, the flexural strength decreased 34.65%, the volume resistance decreased 99.99%. The results of 20 wt% expanded graphite/epoxy composites showed that the Young’s modulus increased 105.07%, the flexural modulus increased 150.91%, the tensile strength decreased 23.88%, the flexural strength decreased 31.74%, the volume resistance decreased 99.99%. And results of carbon fiber/natural graphite/epoxy composites’ properties satisfied the bipolar plates 2017 targets of US Department of Energy. In addition, the Young’s modulus of natural graphite/epoxy composites were also analyzed using the finite element software ANSYS.

    摘  要 i Abstract ii 誌  謝 iii 內文目錄 iv 圖表目錄 vii 第一章 緒論 1 1.1. 研究動機 2 1.2. 文獻回顧 3 1.2.1. 石墨簡介 3 1.2.2. 環氧樹脂簡介 5 1.3. 研究主題 7 第二章 實驗方法與步驟 9 2.1. 實驗儀器 9 2.1.1. 磁力攪拌機 9 2.1.2. 超音波震動器 9 2.1.3. 真空烘箱與真空幫浦 10 2.1.4. 熱風循環烤箱 10 2.1.5. 熱壓機 10 2.1.6. 拉伸試驗機 11 2.1.7. 電子天秤 11 2.1.8. 微波爐 11 2.1.9. 場發射掃描式電子顯微鏡 12 2.1.10. 鑽石切割機 12 2.1.11. 四點探針電阻量測儀 12 2.1.12. 直流攪拌機 13 2.1.13. 氣體滲透率測試儀 13 2.2. 複合材料組成原料 13 2.2.1. 環氧樹脂 13 2.2.2. 天然石墨 13 2.2.3. 膨脹石墨 14 2.2.4. 碳纖維布 14 2.3. 試片製作 14 2.3.1. 複合材料前處理 14 2.3.2. 複合材料熱壓硬化 16 2.3.3. 混合碳纖維布之複合材料 17 2.4. 複合材料後硬化製程 19 2.4.1. 複合材料微波加熱後硬化 19 2.4.2. 複合材料高溫後硬化 21 2.5. 體積電阻量測 21 2.6. 機械性質量測 22 2.6.1. 拉伸試驗 23 2.6.2. 撓曲試驗 23 2.7. 試片微結構觀察 24 2.8. 密度與開放性孔隙度量測 25 2.8.1. 密度量測 25 2.8.2. 開放性孔隙度量測 25 2.9. 氣體滲透率測定 26 第三章 有限單元與數據分析 27 3.1. 有限單元分析 27 3.2. ASTM測試規範 31 3.3. 數據分析 31 3.3.1. 數據平均值 31 3.3.2. 數據標準差 32 3.3.3. Chauvenet’s準則 32 3.3.4. 最小平方法 33 3.4. Halpin-Tsai方程式 34 第四章 結果與討論 38 4.1. 複合材料拉伸測試結果 38 4.2. 複合材料撓曲測試結果 45 4.3. 複合材料導電性質測試結果 49 4.4. 複合材料後硬化處理結果 50 4.4.1. 微波加熱後硬化 50 4.4.2. 高溫後硬化 54 4.4.3. 改變熱壓製程時間 55 4.4.4. 後硬化之最佳參數 56 4.5. 複合材料表面形貌 56 4.6. 複合材料密度與孔隙度 58 4.7. 複合材料添加碳纖維布 59 4.8. 複合材料之氣體滲透度 62 4.9. ANSYS模擬與數據分析 62 第五章 結論 64 參考文獻 67 圖  表 75

    [1] R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
    [2] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff1, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
    [3] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
    [4] C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression,” Solid State Communications, Vol. 96, pp. 555-558, 1997.
    [5] S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Mechanical and physical properties on carbon nanotube,” Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1153-1158, 2000.
    [6] E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, Vol 61, pp. 1899-1912, 2001.
    [7] K. T. Lau and D. Hui, “The revolutionary creation of new advanced materials - carbon nanotube composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
    [8] R. C. Makkus , A. H. H. Janssen, F. A. d. Bruijn, R. K.A.M. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin, Vol. 3, pp. 5-9, 2000.
    [9] J. O. Besenhard, Handbook of Battery Materials, Wiley-VCH, Weinheim, 1999.
    [10] M. Wissler, "Graphite and carbon powders for electrochemical applications," Journal of Power Sources, Vol. 156, pp 142-150, 2006.
    [11] 經濟部能源委員會,2007能源科技研究發展白皮書,經濟部能源局,台北,2007。
    [12] 陳韋任,燃料電池用導電雙極板之奈米複合材料製備及其協成性質研究,國立清華大學動力機械工程學系博士論文,新竹, 2010。
    [13] J. Marcinkoski, J. P. Kopasz, T. G. Benjamin, "Progress in the US DOE fuel cell subprogram efforts in polymer electrolyte fuel cells," International Journal of Hydrogen Energy, Vol. 33, pp. 3894-3902, 2008.
    [14] S. G. Chalk, J. F. Miller, F. W. Wagner, "Challenges for fuel cells in transport applications," Journal of Power Sources, Vol. 86, pp. 40-51, 2000.
    [15] R. Blunk, M. H. A. Elhamid, D. Lisi, Y. Mikhail, "Polymeric composite bipolar plates for vehicle applications," Journal of Power Sources, Vol. 156, pp. 151-157, 2006.
    [16] C. Y. Yen, S. H. Liao, Y. F. Lin, C. H. Hung, Y. Y. Lin, C. C. M. Ma, "Preparation and properties of high performance nanocomposite bipolar plate for fuel cell," Journal of Power Sources, Vol. 162, pp. 309-315, 2006.
    [17] J. Huang, D. G. Baird, J. E. McGrath, "Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials," Journal of Power Sources, Vol. 150, pp. 110-119, 2005.
    [18] S. H. Ko, W. Lee, J. M. Jang, I. H. Kim and S. G. Shin, "Graphite Reinforced Fe–Al–X Composites for Slide Bearing Applications," Surface Review and Letters, Vol. 17, pp. 241-244, 2010.
    [19] Y. W. Wu, K. Wu, K. K. Deng, K. B. Nie, X. J. Wang, M. Y. Zheng, X. S. Hu, "Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles," Materials & Design, Vol. 31, pp. 4862-4865, 2010.
    [20] X. Chen, L. Li, S. Jin, B. Zhang, H. Qian, G. Tong, "Expanded graphite/ polyaniline electrical conducting composites: Synthesis, conductive and dielectric properties," Materials Letters, Vol. 64, pp. 1313-1315, 2010.
    [21] X. G. Zhang, L. L. Ge, W. Q. Zhang, J. H. Tang, L. Ye, Z. M. Li, "Expandable graphite-methyl methacrylate-acrylic acid copolymer composite particles as a flame retardant of rigid polyurethane foam," Journal of Applied Polymer Science, Vol. 122, pp. 932–941, 2011.
    [22] Y. R. Lee, S. C. Kim, H. Lee, H. M. Jeong, A. V. Raghu, K. R. Reddy and B. K. Kim, "Graphite Oxides as Effective Fire Retardants of Epoxy Resin," Macromolecular Research, Vol. 19, pp. 66-71, 2011.
    [23] S. Konwer, J. P. Gogoi, A. Kalita, S. K. Dolui, "Synthesis of expanded graphite filled polyaniline composites and evaluation of their electrical and electrochemical properties," Journal of Materials Science: Materials in Electronics, Vol. 22, pp. 1154-1161, 2011.
    [24] W. Zheng, X. Lu, S. Wong, "Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene," Journal of Applied Polymer Science, Vol. 91, pp. 2781-2788, 2004.
    [25] P. V. Muterlle, I. Cristofolini, M. Pilla, W. Pahl, A. Molinari, "Surface durability and design criteria for graphite–bronze sintered composites in dry sliding applications," Materials & Design, Vol. 32, pp. 3756-3764, 2011.
    [26] A. Yasmin, I. M. Daniel, “Mechanical and thermal properties of graphite platelet/ epoxy composites,” Polymer, Vol. 45, pp. 8211-8219, 2004.
    [27] J. Jin, S. Leesirisan, M. Song, “Electrical conductivity of ion-doped graphite /polyethersulphone composites,” Composites Science and Technology, Vol. 70, pp. 1544-1549, 2010.
    [28] S. R. Dhakatea, S. Sharmaa, M. Borahb, R. B. Mathur, T. L. Dhamia, "Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell," International Journal of Hydrogen Energy, Vol. 33, pp. 7146-7152, 2008.
    [29] C. Du, P. Mingc, M. Houa, J. Fua, Q. Shena, D. Lianga, Y. Fuc, X. Luoc, Z. Shaoa, B. Yia, "Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells," Journal of Power Sources, Vol. 195, pp. 794-800, 2010.

    [30] H. Chen, H. B. Liu, L. Yang, J. X. Li, L. Yang, “Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC,” International Journal of Hydrogen Energy, Vol. 35, pp. 3105- 3109, 2010.
    [31] C. A. May, Y. Tanaka, Epoxy Resins: Chemistry and Technology, Marcel Dekker Inc, New York, 1973.
    [32] H. Lee , K. Neville, Handbook of Epoxy Resins, Mcgraw-Hill, New York, 1967.
    [33] 林宏澤,醯胺化聚壓克力乳膠顆粒催化環氧樹脂硬化反應研究,國立雲林科技大學化學工程研究所碩士論文,雲林,2005。
    [34] 馬振基,高分子複合材料(上冊),正中書局,新北市,1995。
    [35] 吳信玠,熱塑性高分子微粒製備與增韌性質研究,國立臺灣大學材料科學與工程學研究所碩士論文,台北,1999。
    [36] 凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2007。
    [37] 沈文馨,微波處理對多壁奈米碳管/環氧樹脂複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2008。
    [38] T. F. Walsh and C. E. Bakis, “The Effect of High-Temperature Degradation on the Mode-I Critical Strain Energy Release Rate of a Graphite/Epoxy Composite,” Journal of Composites Technology and Research, Vol. 17, pp. 228-234, 1995.
    [39] A. Paipetis, C. Galiotis, "A study of the stress-transfer characteristics in model composites as a function of material processing, fibre sizing and temperature of the environment," Composites Science and Technology, Vol. 57, pp. 827-838, 1997.
    [40] C. B. Lin, M. S. Yeh, T. H. Chuang, C. H. Koo, "Degradation Effects of Low Temperature and Co-60 Radiation on Carbon Fiber/Epoxy Composite," Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 29, pp. 153-159, 1997.
    [41] 鄒慶福,預扭及溫度效應對擬均向性CFRP複合材料疲勞行為之影響,國立清華大學動力機械工程學系碩士論文,新竹,1998。
    [42] Y. Miyano, M. Nakada , M. K. McMurry, "Influence of Stress Ratio on Fatigue Behavior in the Transverse Direction of Unidirectional CFRPS," Vol. 29, pp. 1808-1822, 1995.
    [43] X. Huang, J. W. Gillespie Jr, R. F. Eduljee, "Effect of temperature on the transverse cracking behavior of cross-ply composite laminates," Composites Part B: Engineering, Vol. 28, pp. 419-424, 1997.
    [44] C. E. Browning, C. E. Husman and J. M. Whitney, "Moisture Effects in Epoxy Matrix Composites," AFML-TR-77-41, 1987.
    [45] R. T. Potter, D. Purslow, "The environmental degradation of notched CFRP in compression," Composites, Vol. 14, pp. 206-225, 1983.
    [46] A. J. Barker, V. Balasundaram, "Compression testing of carbon fibre-reinforced plastics exposed to humid environments," Composites, Vol.18, pp. 217-226, 1987.
    [47] F. H. Gojny, M. H. G. Wichmann, B. Fiedler, K. Schulte, "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study," Composites Science and Technology, Vol. 65, pp 2300-2313, 2005.
    [48] J. I. Cauich-Cupul, E. Perez-Pacheco, A. Valadez-Gonzalez, P. J. Herrera-Franco, "Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites," Journal of Materials Science, Vol. 46, pp. 6664-6672, 2011.
    [49] J. Yang, G. Yang, G. Xu, S. Fu , "Cryogenic mechanical behaviors of MMT/epoxy nanocomposites," Composites Science and Technology, Vol. 67, pp. 2934-2940, 2007.
    [50] I. Zaman, Q. Le, H. Kuan, N. Kawashima, L. Luong, A. Gerson, J. Ma, "Interface-tuned epoxy/clay nanocomposites," Polymer, Vol. 52, pp. 497-504, 2011.
    [51] I. Zaman, T. T. Phan, H. Kuan, Q. Meng, L. T. B. La, L. Luong, O. Youssf, J. Ma, "Epoxy/graphene platelets nanocomposites with two levels of interface strength," Polymer, Vol. 52, pp. 1603-1611, 2011.
    [52] D. D. Nguyen1, N. H. Tai, Y. L. Chueh, S. Y. Chen, Y. J. Chen, W. S. Kuo, T. W. Chou, C. S. Hsu, and L. J. Chen, "Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films," Nanotechnology, Vol. 22 , pp. 1-8, 2011.
    [53] 黃琬萱,含裂縫奈米複材三明治結構之能量釋放率研究,國立清華大學動力機械工程學系碩士論文,新竹, 2010。
    [54] 劉家豪,多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2004。
    [55] 張皓翔,奈米碳管及孔距對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究,國立清華大學動力機械工程學系碩士論文,新竹,2011。
    [56] 蘇皇碩,奈米碳管對碳/碳複合材料機械性質與物理性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2010
    [57] 周鈞淳,碳氣凝膠對高分子預浸材積層板複合材料之機械性質影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
    [58] 楊又璇,多壁奈米碳管對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究,國立清華大學動力機械工程學系碩士論文,新竹,2011。
    [59] 宋棋舜,含奈米碳管之奈米複合材料應變感測器的製備與應用,國立清華大學動力機械工程學系碩士論文,新竹,2011。
    [60] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [61] ASTM D790-10, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [62] 行政院國家科學委員會精密儀器發展中心出版,儀器總覽,台北,1998。
    [63] ASTM D792-08, “Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement,” Annual Book of ASTM Standards, Vol. 8.1, 2008.
    [64] ASTM C20-00,"Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water," Annual Book of ASTM Standards, Vol. 15.1, 2010.
    [65] ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    [66] R. D. Cook, D. S. Marlkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th Edition, Wiley, New Jersey, 2001.
    [67] 陳精一,ANSYS 7.0電腦輔助工程實務分析,全華科技圖書股份有限公司,新北市, 2004.
    [68] 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2002。
    [69] J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
    [70] M. K. Yeh, N. H. Tai, J. H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol. 44, pp. 1-9, 2006.
    [71] ASTM D882-10, “Standard Test Method for Tensile Properties of Thin Plastic Sheeting,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [72] J. Bai, "Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix," Letters to the Editor / Carbon, Vol. 41, pp.1309-1328, 2003.
    [73] T. D. Fornes and D. R. Paul, “Modeling properties of nylon 6/clay nanocomposites using composite theories,” Polymer, Vol. 44, pp. 4993-5013, 2003.
    [74] M. Moniruzzaman, F. Du, N. Romero, K. I. Winey, “Increased Flexural Modulus and Strength in SWNT / Epoxy Composites by a New Fabrication Method,” Polymer, Vol. 44, pp. 293-298, 2006.
    [75] J. G. Clulow, F. E. Zappitelli, C. M. Carlstrom, J. I. L. Zemsky, D. N. Busick and M. S. Wilson, “Fuel Cell Technology: Opportunities and Challenges, Topical Conference Proceedings” 2002 AIChE Spring National Meeting, New Orleans, LA, March 10–14, pp. 417–425, 2002.
    [76] US Department of Energy. Office of Hydrogen, Fuel Cells, and Infrastructure Technologies. Multi-year research, development and demonstration plan, 2007. Report available at:
    http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf
    [77] E. A Cho, U. S. Jeon, H. Y. Ha, S. A. Hong, I. H. Oh," Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells," Journal of Power Sources, Vol. 125, pp 178-182, 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE