簡易檢索 / 詳目顯示

研究生: 林旭冠
Hsu-Kuan Lin
論文名稱: 應用於氮化鎵發光二極體之氧化鋅透明導電接觸層
ZnO based TCL contact for GaN based LED applications
指導教授: 黃惠良
Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 45
中文關鍵詞: ZnOTransperent electrodeLED
外文關鍵詞: 氧化鋅, 透明電極, 發光二極體
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文闡述高效率發光二極體,所產生出來的亮度,經由光偵測可見光亮度大約254毫燭光。使用氮化銦鎵/氮化鎵量子井發光二極體,作為我們的發光元件結構。而作為P型電極由原本鎳/金換成鎳/氧化鋅摻鋁透明電極;為了讓發光二極體的發光均勻,由氧化鋅/氧化鋅摻鋁組成作為阻礙層,其中氧化鋅沉積的厚度為440奈米,與P型氮化鎵形成p-i-n結構,大部分電壓落在i層,可以讓發光二極體操作在高電壓 (導通電壓為65伏特)低電流導通的特性,讓光亮度看起來更加均勻及提昇。所以由於透明電極結構的特性,使發光二極體的光萃取效率不會因非透明電極而衰減。在未來改變薄膜沈積的方法,可能實現在一般家庭照明元件,將原本元件耐壓提昇至直流110伏特,進而改進直接連接至交流室電,取代原來的照明設備。


    This thesis work demonstrated the high performance of a light emitting diode (LED) which is able to illuminate visible light at very high lumen (eg. 254 mcd); the LED is formed by five InGaN/GaN quantum wells and a high voltage enduring contacting structure which is composed of Nickel (Ni)/Aluminum doped Zinc Oxide (AZO). In order to enhance the high voltage enduring capability of the LED, one of the contacting structures is formed as a p-i-n structure. By depositing a thick layer of ZnO (i.e. 440 nm) as the i layer of this p-i-n structure, a large portion of voltage is sustained by this i layer, which makes the LED able to increase its voltage tolerance to as high as 65 VDC. Also attributed to the transparent property of the contacting structure, the light emitting capability of this LED demonstrated an unabated one due to the non-transparent electrode; this trait further assures such device as a viable technology solution for tomorrow’s household illuminating devices. With further development on this LED and its processing technology, this LED bears the potential to be directly connected to the household power source -- 110 VAC.

    Chinese abstract --------------------------------------------------------------------------------I English abstract --------------------------------------------------------------------------------II Acknowledgement ----------------------------------------------------------------------------III Contents ----------------------------------------------------------------------------------------IV Chapter 1 Introduction ---------------------------------------------------------------------1 1.1 Characterization of thin film deposition temperature on GaN microstructure ------------------------------------------------------------------------------------1 1.2 Characterization of ohmic contact resistance formed by different metal schemes on GaN diode -------------------------------------------------------------------------3 Chapter 2 Theoretical analysis of GaN based PIN diode ----------------------------5 2.1 PIN Diode fundamentals ---------------------------------------------------------5 2.2 Interface Engineering -------------------------------------------------------------7 2.3 Ni/AZO transparent electrode ---------------------------------------------------9 Chapter 3 Experiment procedures ------------------------------------------------------12 3.1 Physics of Thin Films -----------------------------------------------------------12 3.2 The Sputtering System ----------------------------------------------------------12 3.3 Experiment procedures ---------------------------------------------------------14 3.3.1 Fabrication Process Steps ------------------------------------------------14 3.3.2 The metal mask design ---------------------------------------------------20 3.4 Measurement ---------------------------------------------------------------------22 3.4.1 Field Emission Scanning Electron Microscope (FESEM) ----------22 3.4.2 Atomic Force Microscope (AFM) --------------------------------------24 3.4.3 X-ray diffraction (XRD) -------------------------------------------------25 Chapter 4 Results and Discussion ---------------------------------------------------------26 4.1 Thin film Analysis ---------------------------------------------------------------26 4.1.1 ZnO: Al film ---------------------------------------------------------------26 4.1.2 ZnO film -------------------------------------------------------------------28 4.2 Structure Character Analysis ---------------------------------------------------34 4.3 I-V measurement -----------------------------------------------------------------37 Chapter 5 Conclusion ---------------------------------------------------------------------42 Reference ---------------------------------------------------------------------------------------43

    [1] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
    [2] K. F. Lee, Fabrication and analysis of GaN micro LED
    [3] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, Appl. Phys. Lett. 74, 3930 (1999).
    [4] M. Hagerott, H. Jeon, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi,
    and R. L. Gunshor, Appl. Phys. Lett. 60, 2825 (1992).
    [5] C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W.
    Kuo, and S. C. Chen, Solid-State Electron 47, 849 (2003).
    [6] R. H. Horng, D.-S. Wuu, Y.-C. Lien, and W.-H. Lan, Appl. Phys. Lett. 79,
    2925 (2001).
    [7] Min-Suk Oh, Min-Ki Kwon, Il-Kyu Parka, Sung-Ho Baek, Seong-Ju Park, S.H. Lee, and J.J. Jung, J. Cryst. Growth 289, 107–112 (2006).
    [8] X. A. Cao, E.B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, and D. Walker, Solid-State Electron 46, 1235–1239 (2002).
    [9] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, J. Appl. Phys. 86, 4491 (1999).
    [10] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925 (2001).
    [11] S. Y. Kim, H. W. Jang, and J. L. Lee, Appl. Phys. Lett. 82, 61 (2003).
    [12] K. Y. Ban, semicond. Sci. Technol. 20, 921-924 (2005).
    [13] J. O. Song, K. K. Kim, S. J. Park, and T. Y. Seong, Appl. Phys. Lett. 83, 479 (2003).
    [14] J. K. Ho, C. S. Jong, C. C. Chien, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett. 74, 9 (1999).
    [15] R. S. Muller, T. I. Kamins, and M. Chan, Device Electronics for Integrated Circuits
    [16] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, IEEE Photon. Technol. Lett. 18, 1 (2006).
    [17] D.G. Lim, D.H. Kim, J.K. Kim, O. Kwon, K.J. Yang, K.I. Park, B.S. Kim, S.W. Lee, M.W. Park, D.J. Kwak, Superlattices and Microstructures 39, 107–114 (2006).
    [18] E. F. Schubert, Light-Emitting Diodes.
    [19] J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, R. Navamathavan, and S. J. Park, Appl. Phys. Lett. 85, 25 (2004).
    [20] S. P. Jung, C. H. Lin, H. M. Chan, Z. Fan, J. G. Lu, and P. Lee, High Transparency Low Resistance Oxidized Ni/Au/ZnO Contats to P-GaN for high performance LED Applications.
    [21] C. L. Tseng, M. J. Youh, G. P. Moore, and M. A. Hopkins, Appl. Phys. Lett. 83, 18 (2003).
    [22] Y. H. Chen, Development of transparent ZnO-based optoeletronic devices.
    [23] K. Tonooka, H. Bando, and Y. Aiura, Thin Solid Films 445, 327-331 (2003).
    [24] S. S. Lin, J. L. Huang, and D.F. Lii, Surface and Coatings Technology 176, 173-181 (2004).
    [25] I. Sayago, M. aleixandre, A. Martinez, M. J. Fernandez, J. P. Santos, J. Gutierrez, I. Gracia, and M. C. Horrillo, Synthetic Metals 148, 37-41 (2005).
    [26] S. S. Lin, J. L. Huang, and P. Sajgalik, Surface and Coatings Technology 190, 39-47 (2005).
    [27] Please visit the web site http://www.njit.edu/v2/njcep/field_emission_scanning_electron.htm.
    [28] Please visit the web site http://www.pacificnanotech.com/afm-tutorial_afm-theory.html.
    [29] X-Ray Diffraction and Scanning Probe Microscopy.
    [30] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth 130, 269 (1993).
    [31] S. S. Lin, and J. L. Huang, Surface and Coatings Technology 185, 222– 227 (2004).
    [32] W. Tang, and D.C. Cameron, Thin Solid Films 238, 83 (1994).
    [33] S. S. Lin, J. L. Huang, P. Sajgalik, Surface and Coatings Technology 185, 254-263 (2004).
    [34] B. M. Ataev, Ya. I. Alivov, V. V. Mamedov, S. Sh. Makhmudov, and B. A. Magomedov, Semiconductors 38, 6 (2004).
    [35] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett. 88, 031911 (2006).
    [36] V. Bhatt, P. Pal, and S. Chandra, Surface and Coatings Technology 198, 304-308 (2005).
    [37] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White, Appl. Phys. Lett. 83, 19 (2003).
    [38] Y. S. Zhao, C. L. Jensen, Member, IEEE, R. W. Chuang, Member, IEEE, H. P. Lee, Z. J. Dong, and R. Shih, IEEE Electron Device Lett. 21, 5 (2000).
    [39] S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes.
    [40] X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 _2004_; J. Mater. Sci. 15, 373 (2004).
    [41] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M.o Sano, and K. Chocho, Appl. Phys. Lett. 72, 16 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE