研究生: |
吳柏宏 Wu, Po-Hung |
---|---|
論文名稱: |
建構以冰核蛋白在細胞表面之表現系統及其在對苯二酚糖化修飾之應用 Development of a Surface Expression System with the Ice Nucleation Protein and Its Applications in Hydroquinone Glucosylation |
指導教授: |
吳文騰
Wu, Wen-Teng 朱一民 Chu, I-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 冰核蛋白 、表面表現 、轉糖酵素 、對苯二酚 、熊果素 、糖化 |
外文關鍵詞: | Ice Nucleation Protein, Surface Display, Transglucosidase, Arbutin, Glucosylation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文運用細胞表面工程技術,建構以冰核蛋白 (Ice Nucleation Protein, INP) 為主體之細胞表面表現系統,並以此系統進行全細胞酵素之開發及應用於生物轉化之糖化修飾反應。首先,從四株野生菌篩出Xanthomonas campestris BCRC 12608具有較高的轉糖酵素活性,作為細胞酵素與轉糖酵素基因 (aglA) 之來源。其次,利用基因工程技術選殖自X. campestris BCRC 12846之蛋白INP,將INP的N端與C端連接成INPNC融合蛋白作為本論文表面表現系統之載體蛋白,得到表現質體為pETInaXNC1。進一步將選殖自X. campestris BCRC 12608之轉糖酵素基因aglA送入pETInaXNC1,獲得表面表現轉糖酵素之質體,p8XNC-aglA1與p8XNC-aglA2。我們使用E. coli JM109及E. coli BL21作為INPNC-aglA融合蛋白表現之宿主細胞,經誘導表現後可得到蛋白大小約為90 kDa之INPNC-aglA融合蛋白。
重組E. coli細胞經由細胞膜分級分離及免疫螢光法確認融合蛋白INPNC-aglA確實表現在細胞外表面,並以protease accessibility進行重組E. coli細胞酵素殘留活性試驗。在對苯二酚糖化反應中,經proteinase K處理後的細胞其酵素活性降低,為未經過處理細胞酵素活性的31 %,若細胞同時以proteinase K與EDTA處理後,其酵素活性僅存14 %。綜合實驗結果顯示,INPNC-transgluocosidase融合蛋白確實表現於E. coli外表面,表現後的轉糖酵素仍保有原酵素進行糖化修飾的能力。
以對苯二酚 (HQ) 糖化修飾生成熊果素 (arbutin) 為例,比較X. campestris細胞酵素與surface display transglucosidase之大腸桿菌細胞的活性。取0.3 g細胞酵素,以100 mM HQ及1.2 M maltose為基質於40℃及160 rpm,在總體積5 mL phosphate buffer (100 mM, pH 7.2) 條件進行酵素反應。反應1小時的結果顯示,以surface display transglucosidase為酵素時可生成熊果素23 g/L,莫耳轉化率為83 %,相較之下,以X. campestris細胞酵素進行反應僅生成熊果素4 g/L (莫耳轉化率為16 %)。此外,由酵素特徵的試驗結果顯示,無論使用X. campestris細胞酵素或是surface display transglucosidase之大腸桿菌細胞作為對苯二酚糖化修飾生成熊果素之酵素來源皆存有基質抑制與產物抑制的現象發生。
在全細胞表面表現轉糖酵素生產研究,我們採行饋料批式培養策略進行重組E. coli BL21 (p8XNC-aglA1) 之高密度培養,以乳糖作為誘導劑進行融合蛋白表現。在進行饋料批式培養重組E. coli時,採用30℃的起始細胞培養溫度,繼以25℃誘導融合蛋白的表現。以此培養策略,沒有過多的葡萄糖與醋酸累積於發酵液,因而沒有細胞生長與融合蛋白表現抑制的情況發生,並獲得高轉糖酵素活性的重組E. coli細胞。在此培養條件下,可得18 g/L重組E. coli細胞,而所獲得的全細胞酵素之比活性為501 nkat/g cell。因此,利用饋料批式培養表面表現轉糖酵素之重組E. coli細胞及以乳糖誘導融合蛋白表現的方式可以作為大規模融合蛋白表現之全細胞酵素生產的基礎。
A surface anchoring motif using the ice nucleation protein (INP) of Xanthomonas campestris pv. campestris BCRC 12846 for displaying transglucosidase was developed. The transglucosidase gene from Xanthomonas campestris pv. campestris BCRC 12608 was fused to the truncated ina gene. This truncated INP consisting of N- and C-terminal domains (INPNC) was able to direct the expression of transglucosidase fusion protein to the cell surface of E. coli.
Localization of the truncated INPNC-transglucosidase fusion protein was examined by Western blot analysis and immunofluorescence labeling, and by whole-cell enzyme activity in the glucosylation of hydroquinone. The glucosylation reaction was carried out at 40℃ for 1 h, which gave 23 g/L of alpha-arbutin, and the molar conversion based on the amount of hydroquinone reached 83 %. The use of whole-cells of the wild type strain resulted in an alpha-arbutin concentration of 4 g/L and a molar conversion of 16 % only under the same conditions. The results suggested that E. coli displaying transglucosidase using truncated INPNC as an anchoring motif can be employed as a whole-cell biocatalyst in glucosylation.
Recombinant E. coli displaying transglucosidase on the surface was used as whole-cell biocatalyst in hydroquinone glucosylation, and its enzymatic characteristics were also studied. The enzymatic activity of recombinant E. coli was seven to twelve-fold higher than that of X. campestris when using the same amount of cells. In the enzymatic characterization experiments, the optimal temperature was found to be 40℃. The optimum pH for the glucosylation of hydroquinone by E. coli displaying transglucosidase was 7.2. In the study of the effect of hydroquinone on the conversion of alpha-arbutin, it was found that the inhibitory effect of hydroquinone was profound at high concentrations of hydroquinone. In addition, conversion of hydroquinone to arbutin was inhibited slightly by high initial concentration of arbutin in the reaction mixture. Taken together, the results demonstrated that the enzyme was inhibited by both substrate and product.
A fed-batch culture strategy for the high-cell density cultivation of recombinant E. coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for alpha-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as a feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of alpha-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76 % molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.
We have successfully demonstrated the application of fed-batch culture strategy for the production of recombinant E. coli cells anchoring surface-displayed transglucosidase, for use as a biocatalyst in alpha-arbutin synthesis. Although the transglucosylating activity of recombinant cells using lactose as an inducer was slightly lower than that of the biocatalyst produced by IPTG induction, the use of fed-batch culture by lactose induction resulted in a higher productivity of whole cell biocatalysts. Therefore, fed-batch cultivation coupled with lactose induction offers an attractive strategy for the mass production of recombinant E. coli cells for use as whole-cell biocatalysts in biotransformations such as alpha-arbutin synthesis.
Altenbuchner J, Mattes R. 2005. Escherichia coli. In: Gellissen G, editor. Production of recombinant proteins: novel microbial and eukaryotic expression systems. Weinheim: Wiley-VCH. p 7-43.
Arend J, Warzecha H, Hefner T, Stöckigt J. 2000. Hydroquinone: O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences. Phytochemistry 53:187-193.
Arend J, Warzecha H, Stöckigt J. 2001. Utilizing genetically engineered bacteria to produce plant-specific glucosides. Biotechnol Bioeng 76:126-131.
Bae W, Mulchandani A, Chen W. 2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88:223-227.
Bassi AS, Ding DN, Gloor GB, Margaritis A. 2000. Expression of single chain antibodies (ScFvs) for c-myc oncoprotein in recombinant Escherichia coli membranes by using the ice-nucleation protein of Pseudomonas syringae. Biotechnol prog 16:557-563.
Beckwith JR. 1987. The lactose operon. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, editor. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington: American Society for Microbiology. p 1444-1452.
Benhar I. 2001. Biotechnological applications of phage and cell display. Biotechnol Adv 19:1-33.
Charbit A, Boulain JC, Ryter A, Hofnung M. 1986. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J 5:3029-3037.
Cho CM, Mulchandani A, Chen W. 2002. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68:2026-2030.
Cochet N, Widehem P. 2000. Ice crystallization by Pseudomonas syringae. Appl Microbiol Biotechnol 54:153-161.
Coiffard C, Coiffard LJM, De Roeck-Holtzhauer Y. 1999. Degradation kinetics of arbutin in solution. Pharm Ind 61:574-576.
Cornelis P. 2000. Expressing genes in different Escherichia coli compartments. Curr Opin Biotechnol 11:450-454.
Couteau C, Coiffard LJM. 2000. Photostability determination of arbutin, a vegetable whitening agent. Il Farmaco 55:410-413.
da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463.
Donovan RS, Robinson CW, Glick BR. 1996. Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol 16:145-154.
Edwards AR, Van den Bussche RA, Wichman HA, Orser CS. 1994. Unusual pattern of bacterial ice nucleation gene evolution. Mol Boil Evol 11:911-920.
Eisenthal R, Danson MJ. 2002 Enzyme assays. New York: Oxford University Press. 19p.
Faber K. 2000. Biotransformations in organic chemistry. 4th edition. Berlin: Springer-Verlag. p1-26, 307-321.
Francisco JA, Earhart CF, Georgiou G. 1992. Transport and anchoring of □-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci USA 89:2713-2717.
Freudl R, MacIntyre S, Degen M, Henning U. 1986. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol 188:491-494.
Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S. 1995. Effect of □- and □-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci Biotechnol Biochem 59:143-144.
García-Ochoa F, Santos VE, Casas JA, Gómez E. 2000. Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549-579.
Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss RI. 1997. Display of heterologous proteins on the surface of microorganism: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29-34.
Gillner M, Moore GS, Cederberg H. 1994. Environmental Health Criteria, No157 Hydroquinone. Geneva: World Health Organization. 22p.
Gombert AK, Kilikian BV. 1998. Recombinant gene expression in Escherichia coli cultivation using lactose as inducer. J Biotechnol 60:47-54.
Hew CL, Yang DSC. 1992. Protein interaction with ice. Eur J Biochem 203:33-42.
Hincha DK, Oliver AE, Crowe JH. 1999. Lipid composition determines the effects of arbutin on the stability of membranes. Biophys J 77:2024-2034.
Hoffman BJ, Broadwater JA, Johnson P, Harper J, Fox BG, Kenealy WR. 1995. Lactose fed-batch overexpressioon of recombinant metalloproteins in Escherichia coli BL21(DE3): process control yielding high levels of Metal-incorporated, soluble protein. Protein Expr Purif 6:646-654.
Hori I, Nihei KI, Kubo I. 2004. Structural criteria for depigmenting mechanism of arbutin. Phytother Res 18:475-479.
Hwang WZ, Coetzer C, Tumer NE, Lee TC. 2001. Expression of a bacterial ice nucleation gene in a yeast Saccharomyces cerevisiae and its possible application in food freezing processes. J Agric Food Chem 49:4662-4666.
Inomata S, Yokoyama M, Seto S, Yanagi M. 1991. High-level production of arbutin from hydroquinone in suspension cultures of Catharanthus roseus plant cells. Appl Microbiol Biotechnol 36:315-319.
Inomata S, Yokoyama M, Wachi Y. 1994. Differences in glucosylation of exogenous hydroquinone by two morphologically different lines of Catharanthus roseus cells. Plant Tissue culture letters 11:211-217.
Jahodář L, Dušková J, Polášek M, Papugová P. 1999. Different kinetics of hydroquinone depletion in various medicinal plant tissue cultures producing arbutin. Pharmazie 54:234-235.
Jeong HS, Yoo SK, Kim EJ. 2001. Cell surface display of salmobia, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein. Enzyme Microb Technol 28:155-160.
Jung HC, Ko S, Ju SJ, Kim EJ, Kim MK, Pan JG. 2003. Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities. J Mol Catal, B Enzym 26:177-184.
Jung HC, Lebeault JM, Pan JG. 1998a. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol 16:576-580.
Jung HC, Park JH, Park SH, Lebeault JM, Pan JG.. 1998b. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb Technol 22:348-354.
Kang SM, Rhee JK, Kim EJ, Han KH, Oh JW. 2003. Bacterial cell surface display for epitope mapping of hepatitis C virus core antigen. FEMS Microbiol Lett 226:347-353.
Kawahara H. 2002. The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 94:492-496.
Kim EJ, Yoo SK. 1998. Cell surface display of CD8 ecto domain on Escherichia coli using ice nucleation protein. Biotechnol Tech 12:197-201.
Kim EJ, Yoo SK. 1999. Cell surface display of hepatitis B virus surface antigen by using Pseudomonas syringae ice nucleation protein. Lett Appl Microbiol 29:292-297.
Kim YS, Jung HC, Pan JG. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 66:788-793.
Kilikian BV, Suárez ID, Liria CW, Gombert AK. 2000. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem 35:1019-1025.
Kitao S, Sekine H. 1994. □-D-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of □-arbutin. Biosci Biotechnol Biochem 58:38-42.
Kobashigawa Y, Nishimiya Y, Miura K, Ohgiya S, Miura A, Tsuda S. 2005. A part of ice nucleation protein exhibits the ice-binding ability. FEBS Lett 579:1493-1497.
Kondo A, Ueda M. 2004. Yeast cell-surface display applications of molecular display. Appl Microbiol Biotechnol 64:28-40.
Kong KH, Park SY, Hong MP, Cho SH. 2000. Expression and characterization of human tyrosinase from a bacterial expression system. Comp Biochem Physiol B Biochem Mol Biol 125:563-569.
Kozloff LM, Turner MA, Arellano F. 1991. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J Bacterial 173:6528-6536.
Křen V, Thiem J. 1997. Glycosylation employing bio-systems: from enzymes to whole cells. Chemical Society reviews 26:463-473.
Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S. 2002. Enzymatic synthesis of □-arbutin by □-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioeng 93:328-330.
Kwak YD, Yoo SK, Kim EJ. 1999. Cell surface display of human immunodeficiency virus type 1 gp120 on Escherichia coli by using ice nucleation protein. Clin Diagn Lab Immunol 6:499-503.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-885.
Lee JS, Shin KS, Pan JG, Kim CJ. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat Biotechnol 18:645-648.
Lee SH, Choi JI, Han MJ, Choi JH, Lee SY. 2005. Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnol Bioeng 90:223-230.
Lee SY. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol 14:98-105.
Lee SY, Choi JH, Xu Z. 2003. Microbial cell surface display. Trends Biotechnol 21:45-52.
Lei Y, Mulchandani A, Chen W. 2005. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expresssed organophosphorus hydrolase. Biotechnol Prog 21:678-681.
Li L, Kang DG, Cha HJ. 2004. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol Bioeng 85:214-221.
Lindow SE, Arny DC, Upper CD. 1978. Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol 36:831-838.
Lindow SE, Arny DC, Upper CD. 1982. Bacterial ice nucleation: a factor in Frost injury to plants. Plant Physiol 70:1084-1089.
Lutterbach R, Stöckigt J. 1992. High-yield formation of arbutin from hydroquinone by cell-suspension cultures of Rauwolfia serpentine. Helv Chim Acta 75:2009-2011.
Ly HD, Withers SG. 1999. Mutagenesis of glycosidase. Annu Rev Biochem 68:487-522.
Maeda K, Fukuda M. 1996. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765-769.
Margaritis A, Bassi AS. 1991. Principles and biotechnological applications of bacterial ice nucleation. Crit Rev Biotechnol 11:277-295.
Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208-218.
Michigami Y, Watabe S, Abe K, Obata H, Arai S. 1994. Cloning and sequencing of an ice nucleation active gene of Erwinia uredovora. Biosci Biotechnol Biochem 58:762-764.
Nakagawa H, Dobashi Y, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S. 2000. □-Anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioeng 89:138-144.
Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A. 2006. Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70:564-572.
Neubauer P, Hofmann K, Holst O, Mattiasson B, Kruschke P. 1992. Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol 36:739-744.
Neuhoff V, Stamm R, Eibl H. 1985. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427-448.
Ni Y, Chen RR. 2004. Accelerating whole-cell biocatalysis by reducing outer membrane permeability Barrier. Biotechnol Bioeng 87:804-811.
Nishimura T, Kometani T, Takii H, Terada Y, Okada S. 1994. Purification and some properties of □-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. J Ferment Bioeng 78:31-36.
Oliver AE, Hincha DK, Crowe LM, Crowe JH. 1998. Interactions of arbutin with dry and hydrated bilayers. Biochim biophys Acta 1370:87-97.
Parejo I, Viladomat F, Bastida J, Codina C. 2001. A single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by high-performance liquid chromatography. Phytochem Anal 12:336-339.
Parkin KL. 2003. Putting kinetic principles into practice. In: Marangoni AG, editor. Enzyme kinetics a modern approach. New Jersey: John Wiley & Son. p174-192.
Petit L, Piérard GE. 2003. Skin-lightening products revisited. Int J Cosmet Sci 25:169-181.
Phue JN, Shiloach J. 2004. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21-30.
Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J. 2005. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B at determined by microarrays and northern blot analyses. Biotechnol Bioeng 90:805-820.
Prescott LM, Harley JP, Kiein DA. 1996 Microbiology, 3rd ed. Dubuque, IA: Wm. C. Brown. 55p.
Richins RD, Kaneva I, Mulchandani A, Chen W. 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984-987.
Riesenberg D. 1991. High-cell density cultivation of E. coli. Curr Opin Biotechnol 2:380-384.
Riesenberg D, Guthke R. 1999. High cell density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422-430.
Roberts SM, Turner NJ, Willetts AJ, Tuner MK. 1995. Introduction to biocatalysis using enzymes and micro-organisms. Cambridge: Cambridge University Press. p 34-78.
Samuelson P, Gunneriusson E, Nygren PÅ, Ståhl S. 2002. Display of proteins on bacteria. J Biotechnol 96:129-154.
Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S. 2000. □-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. J Biosci Bioeng 90:625-630.
Sato T, Takeuchi H, Takahashi K, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kino K, Kirimura K. 2003. Selective □-glucosylation of eugenol by □-glucosyl transfer enzyme of Xanthomonas campestris WU-9701. J Biosci Bioeng 96:199-202.
Schmid D, Pridmore D, Capitani G, Battistuta R, Neeser JR, Jann A. 1997. Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae. FEBS Lett 414:590-594.
Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM. 1996. Immobilizing proteins on the yeast cells. Trends Biotechnol 14:115-120.
Shi H, Su WW. 2001. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb Technol 28:25-34.
Shimazu M, Mulchandani A, Chen W. 2001a. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol Prog 17:76-80.
Shimazu M, Mulchandani A, Chen W. 2001b. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318-324.
Shimazu M, Nguyen A, Mulchandani A, Chen W. 2003. Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnol Prog 19:1612-1614.
Shiloach J, Bauer S. 1975. High yield growth of E. coli at different temperatures in a bench scale fermentor. Biotechnol Bioeng 17:227-239.
Shiloach J, Fass R. 2005. Growing E. coli to high cell density-A historical perspective on method development. Biotechnol Adv 23:345-357.
Shiloach J, Kaufman J, Guillard AS, Fass R. 1995. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (□DE3) and Escherichia coli JM 109. Biotechnol Bioeng 49:421-428.
Ståhl S, Uhlén M. 1997. Bacterial surface display: trends and progress. Trends Biotechnol 15:185-192.
Suau R, Cuevas A, Valpuesta V, Reid MS. 1991. Arbutin and sucrose in the leaves of the resurrection plant Myrothamnus Flabellifolia. Phytochemistry 30:2555-2556.
Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T. 2003. Syntheses of arbutin-□-glycosides and a comparison of their inhibitory effects with those of □-arbutin and arbutin on human tyrosinase. Chem Pharm Bull 51:798-801.
Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T. 2004. Inhibitory effects of □-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol Pharm Bull 27:510-514.
Sugimoto K, Nomura K, Nishimura T, Kiso T, Sugimoto K, Kuriki T. 2005. Syntheses of □-arbutin-□-glycosides and their inhibitory effects on human tyrosinase. J Biosci Bioeng 99:272-276.
Suzuki T, Yoshioka T, Tabata M, Fujita Y. 1987. Potential of Datura innoxia cell suspension cultures for glucosylation of hydroquinone. Plant Cell Rep 6:275-278.
Tabata M, Ikeda F, Hiraoka M, Konoshima M. 1976. Glucosylation of phenolic compounds by Datura innoxia suspension culture. Phytochemistry 15:1225-1229.
Tang CR, Sun FZ, Zhao TC. 2002. Advances in the application research of bacterial ice nucleation active (ina) genes. Chinese Journal of Biotechnology 18:407-410.
Ueda M, Tanaka A. 2000. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125-136.
van de Walle M, Shiloach J. 1997. Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 57:71-78.
van der Vaart JM, TE Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT. 1997. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615-620.
Wang AA, Mulchandani A, Chen W. 2001. Whole-cell immobilization using cell surface-exposed cellulose-binding domain. Biotechnol Prog 17:407-411.
Wang AA, Mulchandani A, Chen W. 2002. Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose binding domain and organophosphorus hydrolase. Appl Environ Microbiol 68:1684-1689.
Wang JY, Chao YP. 2006. Immobilization of cells with surface-displayed chitin-binding domain. Appl Environ Microbiol 72:927-931.
Wernérus H, Ståhl S. 2004. Biotechnological applications for surface-engineered bacteria. Biotechnol Appl Biochem 40: 209-228.
Wolber P, Warren G. 1989. Bacterial ice-nucleation proteins. Trends Biochem Sci 14:179-182.
Wolber PK. 1993. Bacterial ice nucleation. Adv Microb Physiol 34:203-237.
Wolber PK, Deininger CA, Southworth MW, Vandekerckhove J, van Montagu M, Warren GJ. 1986. Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci USA 83:7256-7260.
Wong-Madden ST, Landry D. 1995. Purification and characterization of novel glycosidases from the bacterial genus Xanthomonas. Glycobiology. 5:19-28.
Yarema KJ, Bertozzi CR. 2001. Characterizing glycosylation pathways. Genome Biology 2:1-10.
Yokoyama M, Inomata S, Seto S, Yanagi M. 1990. Effects of sugars on the glucosylation of exogenous hydroquinone by Catharanthus roseus cells in suspension culture. Plant Cell Physiol 31:551-555.
Zawada J, Swartz J. 2004. Maintaining rapid growth in moderate-density Escherichia coli fermentations. Biotechnol Bioeng 89:407-415.
Zhang J, Lan W, Qiao C, Jiang H, Mulchandani A, Chen W. 2004. Bioremediation of organophosphorus pesticides by surface-expressed carboxylesterase from mosquito on Escherichia coli. Biotechnol Prog 20:1567-1571.
Zhao JL, Orser CS. 1990. Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens. Mol Gen Genet 223:163-166.
黃思瑀,2004,利用生物觸媒進行對苯二酚醣化反應之研究。清華大學化學工程學系碩士論文。
行政院衛生署,2000,衛署藥字第89028104號。行政院衛生署公報29: (20) 11-12.
財團法人生物技術開發中心,2000,生物技術產業年鑑2000。8-9p.
財團法人生物技術開發中心,2003,生物技術產業年鑑2003。7p.
經濟部工業局,2002,2002生技產業白皮書。5, 7p.