簡易檢索 / 詳目顯示

研究生: 莫文皓
Boon-How Mok
論文名稱: 正交結構硒化鐵之晶體成長、磁性性質與近緣吸收光譜研究
Investigation of the crystal growth, magnetic properties and X-ray absorption Near Edge Structure of Tetragonal FeSex
指導教授: 林樹均
Lin, Su-Jien
吳茂昆
Wu, Maw-Kuen
口試委員: 錢凡之
陳洋元
王明杰
林樹均
吳茂昆
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
中文關鍵詞: 硒化鐵近緣吸收光譜超導磁性
外文關鍵詞: FeSe, XANES, Superconductivity, Magnetic
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在擁有超導轉變溫度26 K的氟(F)摻雜砷化鐵基超導體(LaO1-xFxFeAs)發現後, 鐵基超導體的轉變溫度在短短數年內迅速的提升至56 K. 同時, 更多的鐵基超導體接著被研究出來, 包括了(Ba,K)Fe2As2, LiFeAs 和Fe1+yTe1-xSex等等. 不同於其它鐵基超導體, 硒化鐵在鐵基超導體中擁有最簡單的晶體結構, 它的超導轉變溫度在8 K. 同時, 其結構中不含砷, 但與砷化鐵又有很多共同的物理特性. 其簡單的層狀結構, 提供了人們對高溫超導體超導機制的暸解一個有用的方向, 特別在結構與超導之間的關連. 在此論文中, 我們將呈現硒化鐵晶體的成長方法, 硒化鐵的磁性及吸收光譜的量測結果.
    硒化鐵晶體可以很容易的使用KCl當溶劑的助溶劑生長成取得. 成長之後的晶體需馬上降至低溫長時間退火以助於正交結構硒化鐵的穩定與改善其晶體結晶性. 我們成長出的硒化鐵晶體皆呈現(101)的優選方向. 低溫的X光量測顯示, 硒化鐵在約100 K左右會有一個結構相變, 其與超導呈現了重要的關連. 硒化鐵因其層狀的特性, 在磁性量測上我們得到其異向性的磁性超導行為, 其中Fe-Se層提供了它主要的磁性異向性來源. 根據吸收光譜的量測, 硒化鐵中硒缺陷所造成的結構變異會提供鐵-硒混成軌域的自由電子機率, 這可能與超導生成的機制有關.


    Soon after the discovery of LaO1-xFxFeAs with superconductivity transition Tc ~ 26 K, the Tc of iron-based superconductor was quickly raising up to 56 K. More iron-based superconductors, e.g., (Ba,K)Fe2As2, LiFeAs and Fe1+yTe1-xSex were discovered subsequently. Among of that, Iron-chacogenides series, i.e. FeSex, has triggered great interest because of its simplest crystal structure and superconductivity below 8 K without any carrier doping. It do not involve arsenic but share several common features with iron-pnictides. The simplest structure of FeSe-superconductors might be able to provide important clues to the mechanism of superconductivity in iron-based superconductors. In this thesis, we present the growth method of the FeSex crystals by using KCl flux, the measurements of magnetic properties and X-ray absorption sprectroscopy (XAS), especially the Near edge structure of XAS.
    FeSex crystals can be easily grown with KCl flux, which need to annealing in-situ at low temperature after the growth process immediately to stabilize the tetragonal phase and improve the crystalinity. Our crystal tends to prefer in (101) direction. Low temperature X-ray measurements reveals that FeSex posses a structure transformation below 100 K which may play an important roles to the superconductivity. Due to the layered structure, the magnetic measurement reveal that FeSex posses an anisotropy magnetic behavior, which the Fe – Se layered may contribute to the anisotropy behavior. The XANES measurement reveal that a lattice distortion observed in the XAS Fe K-edge spectra of Se-deficient FeSex crystals that may produce itinerant electrons in the Fe – Se hybridization bond seen in the Se K-edge spectra.

    Contents 中文摘要 Abstract Contents List of Figures List of Tables Chapter 1 Introduction 1 Chapter 2 Theorem of Magnetism, Superconductivity and XAS 10 2-1 Magnetism 10 2-1-1 Paramagnetism 10 2-1-2 Diamagnetism 13 2-1-3 Ferromagnetism, Ferrimagnetism and Antiferromagnetism 13 2-1-4 Spin-glass 14 2-2 Superconductivity 15 2-3 X-ray absorption spectroscopy 18 Chapter 3 Crystal grwoth and sample Characterization 21 3-1 Crystal growth 21 3-2 Sample Characterization 24 3-2-1 Phase Characterization 24 3-2-2 Chemical Composition Determination 24 3-2-3 X-ray Absorption Spectroscopy 25 3-2-4 Electric Transport Measurement 25 3-2-5 DC Susceptibility Measurement 26 Chapter 4 Results and Discussion 29 4-1 X-ray Diffraction Structure Identification 29 4-1-1 X-ray structure identification of FeSex 29 4-1-2 Temperature Dependent of X-ray Scattering Measurements. 34 4-1-3 Doping FeSex 36 4-1-3-1 MnyFe1-ySex 36 4-1-3-2 CuyFe1-ySex 38 4-1-3-3 FeSe1-xSbx 40 4-2 Crystal Morphology and Chemical Composition Determination 43 4-2-1 FeSex 43 4-2-2 Doping FeSex 46 4-2-2-1 MnyFe1-ySex 46 4-2-2-2 CuyFe1-ySex 47 4-2-2-3 FeSe1-xSbx 48 4-2-3 Composition comparing of all crystals 49 4-3 Magnetic Properties 50 4-3-1 FeSex 50 4-3-2 Doping FeSex 60 4-3-2-1 MnyFe1-ySex 60 4-3-2-2 CuyFe1-ySex 62 4-3-2-3 FeSe1-xSbx 64 4-4 Resistive Properties 67 4-4-1 FeSex 67 4-4-2 Doping FeSex 69 4-4-2-1 MnyFe1-ySex 69 4-4-2-2 CuyFe1-ySex 70 4-4-2-3 SbyFe1-ySex 70 4-5 X-ray Absorption Spectroscopy (XAS) 73 4-5-1-1 FeSex Near Edge X-ray Absorption Spectroscopy (XANES) 73 4-5-1-2 Fe L-edge spectroscopy 81 4-5-2 Low temperature FeSex Near Edge X-ray Absorption Spectroscopy (XANES) 83 4-5-3 Doping FeSex Near Edge X-ray Absorption Spectroscopy (XANES) 88 4-5-3-1 MnyFe1-ySex 88 4-5-3-2 CuyFe1-ySex 94 4-5-3-3 FeSe1-xSbx 98 4-5-4 Low temperature doping FeSex Near Edge X-ray Absorption Spectroscopy (XANES) 101 4-5-4-1 MnyFe1-ySex 101 4-5-4-2 CuyFe1-ySex 104 4-5-4-3 FeSe1-xSbx 107 Chapter 5 Conclusion 111 References

    1 Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. of Am. Chem. Soc. 128, 10012 (2008).
    2 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. of Am. Chem. Soc. 130, 3296 (2008).
    3 X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).
    4 G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).
    5 Zhi-An Ren, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou, and Zhong-Xian Zhao, Europhys. Lett. 82, 57002 (2008).
    6 Zhi-An Ren, Lu Wei, Yang Jie, Yi Wei, Shen Xiao-Li, Li Zheng-Cai, Che Guang-Can, Dong Xiao-Li, Sun Li-Ling, Fang Zhou, and Zhao Zhong-Xian, Chin. Phys. Lett. 25, 2215 (2008).
    7 J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008).
    8 B. Lorenz, K. Sasmal, R. P. Chaudhury, X. H. Chen, R. H. Liu, T. Wu, and C. W. Chu, Phys. Rev. B 78, 012505 (2008).
    9 Jun Zhao, Q. Huang, Clarina De La Cruz, Shiliang Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and Peng-Cheng Dai, Nature Mat. 7, 953 (2008).
    10 H. Chen, Y. Ren, Y. Qiu, Wei Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q. Huang, and X. H. Chen, Europhys. Lett. 85, 17006 (2008).
    11 D. J. Singh and M. H. Du, Phys. Rev. Lett. 100, 237003 (2008).
    12 K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008).
    13 C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and Pengcheng Dai, Nature (London) 453, 899 (2008).
    14 C.W. Chu, Nature physics 5, 787 (2009).
    15 M. Rotter, M. Tegal, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
    16 J. H. Tapp, Z. J. Tang, B. Lv, K. Sasmal, B. Lorentz, C. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505(R) (2008).
    17 H.Q. Luo, P. Cheng, Z.S. Wang, H. Yang, Y. Jia, L. Fang, C. Ren, L. Shan, and H.H. Wen, Physica C 469, 477 (2009).
    18 F.-C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, and M.K. Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008).
    19 X. Zhu, F. Han, G. Mu, B. Zeng, P. Cheng, B. Shen, and H. H. Wen, Phys. Rev. B 79, 024516 (2009).
    20 X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H. H. Wen, Phys. Rev. B 79, 220512(R) (2009).
    21 F. Gronvold, Acta Chem. Scand. (1947-1973) 22, 1219 (1968).
    22 B. K. Jain, A. K. Singh, and K. Chandra, J. Phys. F: Met. Phys. 8, 2625 (1978).
    23 Schuster W., MiMer H., and Komarek KL, Monats Chem 110, 1153 (1979).
    24 T. Hirone and S. Maeda, J . Phys. Soc. Japan 9, 497 (1954).
    25 Terzieff P. and Komarek KL, Monats Chem 109, 651 (1978).
    26 M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008).
    27 K.W. Yeh, T.W. Huang, Y.L. Huang, T.K. Chen, F.C. Hsu, P.M. Wu, Y.C. Lee, Y.Y. Chu, C.L. Chen, J.Y. Luo, D.C. Yan, and M.K. Wu, Europhys. Lett. 84, 37002 (2008).
    28 Yoshikazu Mizuguchi, Fumiaki Tomioka, Shunsuke Tsuda, Takahide Yamaguchi, and Yoshihiko Takano, J. Phys. Soc. Jpn. 78, 074712 (2009).
    29 Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 93, 152505 (2008).
    30 S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nature Mater. 14, 2491 (2008).
    31 S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009).
    32 Alaska Subedi, Lijun Zhang, D.J. Singh, and M.H. Du, Phys. Rev. B 78, 134514 (2008).
    33 R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H. Klauss, and H. Luetkens, Phys. Rev. B 78, 220510 (2008).
    34 H. Kotegawa, S. Masaki, Y. Awai, H. Tou, Y. Mizuguchi, and Y. Takano, J. Phys. Soc. Jpn. 77, 113703 (2008).
    35 T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, Phys. Rev. Lett. 102, 177005 (2009).
    36 T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009).
    37 S. B. Zhang, Y. P. Sun, X. D. Zhu, X. B. Zhu, B. S. Wang, G. Li, H. C. Lei, X. Luo, Z. R. Yang, W. H. Song, and J. M. Dai, Supercond.. Sci. Technol. 22, 015020 (2009).
    38 B. H. Mok, S. M. Rao, M. C. Ling, K. J. Wang, C. T. Ke, P. M. Wu, C. L. Chen, F. C. Hsu, T. W. Huang, J. Y. Luo, D. C. Yan, K. W. Yeh, T. B. Wu, A. M. Chang, and M. K. Wu, Cryst. Growth Des. 9 (7), 3260 (2009).
    39 M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang, T.K. Chen, S.M. Rao, B.H. Mok, C.L. Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu, and T.P. Perng, Physica C 469, 340 (2009).
    40 Chul-Ho Lee, Akira Iyo, Hiroshi Eisaki, Hijiri Kito, Maria Teresa Fernandez-Diaz, Toshimitsu Ito, Kunihiro Kihou, Hirofumi Matsuhata, Markus Braden, and Kazuyoshi Yamada, J. Phys. Soc. Jpn. 77, 083704 (2009).
    41 Marianne Rotter, Michael Pangerl, Marcus Tegel, and Dirk Johrendt, Angew. Chem. Int. Ed. 47, 7949 (2008).
    42 Michael J. Pitcher, Dinah R. Parker, Paul Adamson, Sebastian J. C. Herkelrath, Andrew T. Boothroyd, and Simon J. Clarke, Chem. Commun. (Cambridge), 5918 (2008).
    43. C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley and Sons (1996).
    44. J.A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor & Francis, London (1993)
    45. K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986)
    46. J. File and R.G. Mills, Phys. Rev. Lett. 10, 93 (1963)
    47. L. P. Gor’kov, Zh. Eksperim. I Teor. Fiz. 36, 1918 (1959) [Sov. Phys. –JETP 9, 1364 (1959)].
    48. http://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy
    49. Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C.; Wu, M. K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14262.
    50. C. P. Poole, H. A. Farach, and R. J. Creswick, Superconductivity, Academic Press Inc. (1995).
    51. Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C.; Wu, M. K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14262.
    52. Alsen, N. Geol. Foeren. Stockholm Foerh. 1925, 47, 19.
    53. Lilley, E.; Newkirk, J. B. J. Mater. Sci. 1967, 2, 567.
    54. Elwell, D.; Scheel, H. J. In Crystal Growth from High Temperature Solutions; Academic Press: New York, 1975.
    55. M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang,T.K. Chen, S.M. Rao, B.H. Mok, C.L.Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu and T.P. Perng ,2009, PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS ,469,p.340-349
    56. S. Matsuishi, Y. Inoue, T. Nomure, Y. Kamihara, M. Hirano and H. Hosono, New J. Phys. 11, 025012 (2009)
    57. S. A. J. Kimber, A. Kreyssig, Y. –Z. Zhang, H. O. Jeschke, R. Valenti, F. Yokaichiya, E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Canfield, A. I. Goldman and D.N. Argyrious, Nature Mater. 8, 471 (2009).
    58. A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).
    59. J. H. Chu, J. G. Analytis, C. Kucharczyk and I. R. Fisher, Phys. Rev. B 79, 014506 (2009).
    60. Lijun Zhang, Alaska Subedi, D. J. Singh, and M. H. Du, PHYSICAL REVIEW B 78, 174520 2008.
    61. T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, V. Ksenofontov, F. Casper, C. Felser and R. J. Cava, arXiv:0905.1065.
    62. A. E. Karkin, A. N. Titov, E. G. Galieva, A. A. Titov and B. N. Goshchitskii, arXiv: 0911.1194
    63 Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C.; Wu, M. K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14262.
    64 T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009).
    65 Zhaofei Li, JingJu, JunTang, KazumiSato, MasanoriWatahiki, KatsumiTanigaki, Journal of Physics and Chemistry of Solids 71 (2010) 495–498
    66 A. E. Karkin, A. N. Titov, E. G. Galieva, A. A. Titov and B. N. Goshchitskii, arXiv:0911.1194
    67 M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang,T.K. Chen, S.M. Rao, B.H. Mok, C.L.Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu and T.P. Perng ,2009,“The Development of the Superconducting PbO-type β–FeSe and Related Compounds” , PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS ,469,p.340-349
    68 T.W. Huang, T.K. Chen, K.W. Yeh, C.T. Ke, C.L. Chen, Y.L. Huang, F.C. Hsu, M.K. Wu, P.M. Wu, M Avdeev , AJ Studer , PHYSICAL REVIEW B , Vol: 82 , Issue: 10 , Number: 104502
    69 C. L. Chen, S. M. Rao, C. L. Dong, J. L. Chen, T. W. Huang, B. H. Mok, M. C. Ling, W. C. Wang, C. L. Chang, T. S. Chan, J. F. Lee, J.-H. Guo and M. K. Wu, EPL, 93 (2011) 47003
    70 de Groot F., Vank’o G. and Glatzel P., J. Phys.: Condens. Matter, 21 (2009) 104207
    71 Chang C. L., Chen C. L., Dong C. L., Chern G., Lee J.-F. and Jang L. Y., J. Electron Spectrosc. Relat. Phenom., 114 (2001) 545.
    72 Longa S. D., Arcovito A., Vallone B., Castellano A. C., Kahn R., Vicat J., Soldo Y. and Hazemann J. L., J. Synchrotron Radiat., 6 (1999) 1138.
    73 Chen C. L., Dong C. L., Chen J. L., Guo J-H., Yang W. L., Yeh K. W., Huang T. W., Mok B. H., Chan T. S., Chang C. L., Rao S. M. and Wu M. K., The investigation of the electronic states in FeSex single crystals and FeSe doped with Te by XAS and RIXS (unpublished).
    74 Yang W. L., Sorini A. P., Chen C.-C., Moritz B., Lee W.-S., Vernay F., Olalde-Velasco P., Denlinger J. D., Delley B., Chu J.-H., Analytis J. G., Fisher I. R., Ren Z. A., Yang J., Lu W., Zhao Z. X., van den Brink J., Hussain Z., Shen Z.-X. and Devereaux T. P., Phys. Rev. B, 80 (2009) 014508.
    75 Lee K.-W., Pardo V. and Pickett W. E., Phys. Rev. B, 78 (2008) 174502.
    76 Yamasaki A., Matsui Y., Imada S., Takase K., Azuma H., Muro T., Kato Y., Higashiya A., Sekiyama A., Suga S., Yabashi M., Tamasaku K., Ishikawa T., Terashima K., Kobori H., Sugimura A., Umeyama N., Sato H., Hara Y., Miyagawa N. and Ikeda I., Phys. Rev. B, 82 (2010) 184511.
    77 Yoshida R., Wakita T., Okazaki H., Mizuguchi Y., Tsuda S., Takano Y., Takeya H., Hirata K., Muro T., Okawa M., Ishizaka K., Shin S., Harima H., Hirai M., Muraoka Y. and Yokoya T., J. Phys. Soc. Jpn., 78 (2009) 034708.
    78 Subedi A., Zhang L., Singh D. J. and Du M. H., Phys. Rev. B, 78 (2008) 134514.
    79 Mizuguchi Y., Tomioka F., Tsuda S., Yamaguchi T. and Takano Y., Appl. Phys. Lett., 93 (2008) 152505.
    80 B. Joseph, A. Iadecola, L. Simonelli, Y. Mizuguchi, Y. Takano, T. Mizokawa, N. L. Saini, arXiv : 1012.1436.
    81 Bianconi A., Fritsch E., Calas G., and Petiau J., Phys. Rev. B 32, 4292 (1985).
    82 Kvashnina K. O., Butorin S. M., Cui D., Vegelius J., Puranen A., Gens R. and Glatzel P., J. of Phys: Conf. Ser. 190, 012191 (2009).
    83 T.W. Huang, T.K. Chen, K.W. Yeh, C.T. Ke, C.L. Chen, Y.L. Huang, F.C. Hsu, M.K. Wu, P.M. Wu, M Avdeev , AJ Studer , PHYSICAL REVIEW B , Vol: 82 , Issue: 10 , Number: 104502

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE