研究生: |
謝福鈞 |
---|---|
論文名稱: |
反應-擴散模型組週期解路徑之數值探討 |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 打靶法 、Crank-Nicolson 法 、牛頓迭代法 、隱函數定理 、分歧圖 、虛擬弧長延拓法 |
外文關鍵詞: | Shooting method, Crank-Nicolson method, Newton’s interative method, Implicit function theorem, Bifurcation diagram, Pseudo-arclength continuation method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要在探討反應-擴散模型組週期解路徑。本文提供一種演算法來求整個解路徑,並延拓隨著一個參數變動的非線性偏微分方程組之週期解,我們稱之為虛擬弧長延拓法。我們將虛擬弧長延拓法應用在反應-擴散模型之非線性偏微方程組上,而週期解路徑之虛擬弧長延拓法是基於打靶法、牛頓法、Crank-Nicolson 法、猜測及解法及隱函數定理等數值方法,且我們將利用其來探討週期解路徑。
The purpose of this paper is to investigate the period solution path of a Reaction-Diffusion Models. This paper will provide the method to calculate whole solution paths and continue the period solution path of partial differential equations which variate a parameter.We call this the pseudo- arclength continuation method. It is applied to the nonlinear elliptic equation of Reaction-Diffusion Models. The main tools of the pseudo-arclength continuation method are shooting method, Newton’s method, Crank-Nicolson’s method, predictor-solver and implicit function theorem. These solutions will be used to confer the period solution paths.
[1] Allgower,E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281,(1986).
[2] Aselone,P.M. and Moore,R.H., An Extension of the Newton-
Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,(1966).
[3] Atkinson,K.E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599,(1977).
[4] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568,(1970).
[5] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite dimensional approxi-mation of a bifurcation problems, Numer. Math., 36, pp.1-25,(1980).
[6] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35,(1977).
[7] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
[8] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series,(1979).
[9] Holodniok,M. and Knedlik,P. and Kubiced,M., Continuation of Periodic Solutions in Parabolic Partial Differential Equations, International Series of Numerical Mathematics,Vol. 79, pp.122-130, New York, (1987).
[10] Jen,K.C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, pp.97-121,(1995).
[11] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,(1987).
[12] Keller,H.B., in " Recent Advances in Numerical Analysis ", Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p 73,(1978).
[13] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
[14] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384,(1977).
[15] Keller,H.B. and Langford,W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108,(l972).
[16] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).
[17] Kurt Lust and Dirk Roose, Computatation and bifurcation analysis of periodic solutions of large-scale systems, Springer, (l999).
[18] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,(1980).
[19] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).
[20] Wacker,H.(ed),Continuation Methods, Academic Press, New York, (1978).
[21] 高慰祖,非線性憜圓方程週期解路徑之分歧與延拓, 國立新竹師範學院進修暨推廣部教師在職進修數理研究所數理教育碩士論文,16-17頁(2003).
[22] 雷普干&馬並南,分歧問題的逼近理論與數值分法(武漢大學研究生教材),12-15頁(1992).