研究生: |
楊宇文 Yang, Yu-Wen |
---|---|
論文名稱: |
開發高通量腫瘤晶片應用於藥物篩選與預測癌症轉移 High-throughput tumor spheres on a chip for drug screening and prediction of cancer metastasis |
指導教授: |
胡尚秀
Hu, Shang-Hsiu |
口試委員: |
李亦淇
Lee, I-Chi 黃薇蓁 Huang, Wei-Chen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 個性化醫療 、3D細胞培養模型 、高通量 、藥物篩選 、腫瘤類器官 、增長率抑制指標 、模擬轉移 |
外文關鍵詞: | personalized medicine, 3D cell culture model, high-throughput, drug screening, tumor organoids, growth rate inhibition metrics, emulating metastatic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據世界衛生組織的報告:「癌症是全球第二大死亡原因,在2018年估計有 960 萬人死亡,即六分之一的死亡人數。其中肺癌、前列腺癌、結直腸癌、胃癌和肝癌是男性最常見的癌症類型,而在女性中則是乳腺癌、結腸直腸癌、肺癌、宮頸癌和甲狀腺癌最常見。」因此對於癌症的治療是迫在眉睫的。
在過去的十年中,三維細胞培養技術如雨後春筍般湧現,並越來越受到研究人員的歡迎。其中,類器官技術是關注的焦點。類器官技術改善了傳統二維細胞培養和動物模型的不足。類器官具有更接近人體組織的微環境,極大地支持了癌症研究中的各種潛在應用,為癌症研究和個性化治療提供了新的平台。
在此篇研究中,我們建構了一個簡單新穎的模塊化3D細胞培養模型,其方法是通過將聚(甲基丙烯酸2-羥乙酯)pHEMA和預先處理好的晶片加入細胞培養皿或多孔盤中,等待pHEMA溶液乾燥後均勻的塗布在晶片表面使其變得親水性,讓細胞不易貼附於盤底而使其聚集成球。在新方法中培養出的腫瘤球體,不論是一致性、均勻性和再現性皆是優於基質膠培養方法。新機型的易用性和抗外界干擾也是懸滴法無法相比的一大優勢。在平台上高通量製造一致、均勻的腫瘤類器官也為我們的藥物篩選提供了保障,排除了腫瘤生長發育差異的影響。
將我們的方法與confocal dish結合,可以獲得均勻、高陣列、高分辨率的細胞球體圖像。當我們的方法與 96-well plate結合時,它可以對腫瘤細胞球體進行藥物篩選。此外我們使用生長速率抑制指標來評估藥物對腫瘤細胞球體的影響,在評估小分子藥物對分裂細胞的影響方面,它可以比傳統的指表現出更好的性能。而與transwell相結合可以模擬簡易的體外癌症轉移。最終,實驗結果表明,我們的新平台可用於創建高通量腫瘤類器官,用於藥物篩選、預測和個體患者治療方案的設計。
According to the WHO report: “Cancer is the second leading cause of death globally, accounting for an estimated 9.6 million deaths, or one in six deaths, in 2018. Lung, prostate, colorectal, stomach, and liver cancers are the most common types of cancer in men, while breast, colorectal, lung, cervical, and thyroid cancers are the most common in women.” Therefore, the treatment of cancer is urgent.
In the past decade, three-dimensional cell culture techniques have mushroomed and become increasingly popular among researchers. Among them, organoid technology is the focus of attention. Organoid technology improves the deficiencies of traditional two-dimensional cell culture and animal models. Organoids have a microenvironment closer to human tissue, which greatly supports various potential applications in cancer research, providing a new platform for cancer research and personalized therapy.
We constructed a simple and novel modular 3D cell culture model by adding poly(2-hydroxyethyl methacrylate) pHEMA and pretreatment chips to cell culture dishes or multi-well plates, waiting for pHEMA to dry and the chip surface became hydrophobic. The consistency, uniformity, and reproducibility of tumor spheroids cultured in our new method are superior to traditional Matrigel culture methods. The new model's user-friendliness and resistance to external interference are also major advantages over the hanging drop method. The high-throughput fabrication of consistent and uniform tumor organoids on the platform also provides a guarantee for our drug screening, excluding the influence of differences in tumor growth and development.
Combining our method with a confocal dish can obtain uniform, high-array, high-resolution cell spheroid images. When our method is combined with a 96-well multi-well plate, it enables drug screening of tumor cell spheroids. In addition, we use the growth rate inhibition metrics (GR metrics) to evaluate the effect of drugs on tumor cell spheroids, which can show a better performance than the previous metrics (IC50 or Emax values) in evaluating the impact of small molecule drugs on dividing cells. Combining with transwell can simulate simple in vitro cancer metastasis.
Ultimately, experimental results show that our new platform can be used to create high-throughput tumor organoids for drug screening, prediction, and design of individual patient treatment regimens.
1. Global health estimates 2020: Deaths by cause, age, sex, by country and by region, 2000‐2019. 2020.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 71(3):209-249.
3. Siegel RL, Miller KD, Fuchs HE, Jemal A. 2021. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians. 71(1):7-33.
4. Siegel RL, Miller KD, Fuchs HE, Jemal A. 2022. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 72(1):7-33.
5. Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, Shonka N, Gilbert MR, Sawaya R, Prabhu SS et al. 2014. Idh1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. NEURO-ONCOLOGY. 16(1):81-91.
6. Chan AWH, Zhong JH, Berhane S, Toyoda H, Cucchetti A, Shi KQ, Tada T, Chong CCN, Xiang BD, Li LQ et al. 2018. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection. JOURNAL OF HEPATOLOGY. 69(6):1284-1293.
7. Nagino M, Ebata T, Yokoyama Y, Igami T, Sugawara G, Takahashi Y, Nimura Y. 2013. Evolution of surgical treatment for perihilar cholangiocarcinoma a single-center 34-year review of 574 consecutive resections. ANNALS OF SURGERY. 258(1):129-140.
8. Barton MB, Jacob S, Shafiq J, Wong KR, Thompson SR, Hanna TP, Delaney GP. 2014. Estimating the demand for radiotherapy from the evidence: A review of changes from 2003 to 2012. RADIOTHERAPY AND ONCOLOGY. 112(1):140-144.
9. Chargari C, Peignaux K, Escande A, Renard S, Lafond C, Petit A, Kee DLC, Durdux C, Haie-Meder C. 2022. Radiotherapy of cervical cancer. CANCER RADIOTHERAPIE. 26(1-2):298-308.
10. Gong LY, Zhang YJ, Liu CC, Zhang MZ, Han SX. 2021. Application of radiosensitizers in cancer radiotherapy. INTERNATIONAL JOURNAL OF NANOMEDICINE. 16:1083-1102.
11. Lei G, Mao C, Yan YL, Zhuang L, Gan BY. 2021. Ferroptosis, radiotherapy, and combination therapeutic strategies. PROTEIN & CELL. 12(11):836-857.
12. Ferrari S, Serra M. 2015. An update on chemotherapy for osteosarcoma. EXPERT OPINION ON PHARMACOTHERAPY. 16(18):2727-2736.
13. Ikeda M, Morizane C, Ueno M, Okusaka T, Ishii H, Furuse J. 2018. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives. JAPANESE JOURNAL OF CLINICAL ONCOLOGY. 48(2):103-114.
14. Park SB, Goldstein D, Krishnan AV, Lin CSY, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC. 2013. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA-A CANCER JOURNAL FOR CLINICIANS. 63(6):419-437.
15. Starobova H, Vetter I. 2017. Pathophysiology of chemotherapy-induced peripheral neuropathy. FRONTIERS IN MOLECULAR NEUROSCIENCE. 10.
16. Wei GQ, Wang Y, Yang G, Wang Y, Ju R. 2021. Recent progress in nanomedicine for enhanced cancer chemotherapy. THERANOSTICS. 11(13):6370-6392.
17. Brannon-Peppas L, Blanchette JO. 2012. Nanoparticle and targeted systems for cancer therapy. ADVANCED DRUG DELIVERY REVIEWS. 64:206-212.
18. Guo YQ, Xu F, Lu TJ, Duan ZF, Zhang Z. 2012. Interleukin-6 signaling pathway in targeted therapy for cancer. CANCER TREATMENT REVIEWS. 38(7):904-910.
19. Lee YT, Tan YJ, Oon CE. 2018. Molecular targeted therapy: Treating cancer with specificity. EUROPEAN JOURNAL OF PHARMACOLOGY. 834:188-196.
20. Raj S, Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, Ruokolainen J, Das BC, Kumar D. 2021. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. SEMINARS IN CANCER BIOLOGY. 69:166-177.
21. Seebacher NA, Stacy AE, Porter GM, Merlot AM. 2019. Clinical development of targeted and immune based anti-cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH. 38.
22. Xu XY, Ho W, Zhang XQ, Bertrand N, Farokhzad O. 2015. Cancer nanomedicine: From targeted delivery to combination therapy. TRENDS IN MOLECULAR MEDICINE. 21(4):223-232.
23. Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K et al. 2012. Safety and activity of anti-pd-l1 antibody in patients with advanced cancer. N Engl J Med. 366(26):2455-2465.
24. Pardoll DM. 2012. The blockade of immune checkpoints in cancer immunotherapy. NATURE REVIEWS CANCER. 12(4):252-264.
25. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan JD, Wong P, Ho TS et al. 2015. Mutational landscape determines sensitivity to pd-1 blockade in non-small cell lung cancer. SCIENCE. 348(6230):124-128.
26. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB et al. 2012. Safety, activity, and immune correlates of anti-pd-1 antibody in cancer. N Engl J Med. 366(26):2443-2454.
27. Ebos JML. 2015. Prodding the beast: Assessing the impact of treatment-induced metastasis. Cancer Research. 75(17):3427-3435.
28. Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. 2018. Natural compounds and combination therapy in colorectal cancer treatment. European Journal of Medicinal Chemistry. 144:582-594.
29. Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 2020. 5-fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Science. 111(9):3142-3154.
30. Pizarro AM, Barry NPE, Sadler PJ. 2013. 3.25 - metal–DNA coordination complexes. In: Reedijk J, Poeppelmeier K, editors. Comprehensive inorganic chemistry ii (second edition). Amsterdam: Elsevier. p. 751-784.
31. Xu Y, Villalona-Calero MA. 2002. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. Annals of Oncology. 13(12):1841-1851.
32. Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M et al. 2020. Japanese society for cancer of the colon and rectum (jsccr) guidelines 2019 for the treatment of colorectal cancer. International Journal of Clinical Oncology. 25(1):1-42.
33. Watanabe T, Muro K, Ajioka Y, Hashiguchi Y, Ito Y, Saito Y, Hamaguchi T, Ishida H, Ishiguro M, Ishihara S et al. 2018. Japanese society for cancer of the colon and rectum (jsccr) guidelines 2016 for the treatment of colorectal cancer. International Journal of Clinical Oncology. 23(1):1-34.
34. Das S, Kundu M, Jena BC, Mandal M. 2020. Chapter 25 - causes of cancer: Physical, chemical, biological carcinogens, and viruses. In: Kundu SC, Reis RL, editors. Biomaterials for 3d tumor modeling. Elsevier. p. 607-641.
35. Media SAC. 2019. The history of cancer therapy, an interactive timeline. SCIENTIFIC AMERICAN.
36. Falzone L, Salomone S, Libra M. 2018. Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology. 9.
37. Jin M-Z, Jin W-L. 2020. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy. 5(1):166.
38. Emon B, Bauer J, Jain Y, Jung B, Saif T. 2018. Biophysics of tumor microenvironment and cancer metastasis - a mini review. Comput Struct Biotechnol J. 16:279-287.
39. Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 2019. 3d tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnology and Bioengineering. 116(1):206-226.
40. Balkwill F, Mantovani A. 2001. Inflammation and cancer: Back to virchow? The Lancet. 357(9255):539-545.
41. Sangiovanni A, Del Ninno E, Fasani P, De Fazio C, Ronchi G, Romeo R, Morabito A, de Franchis R, Colombo M. 2004. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology. 126(4):1005-1014.
42. Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell. 140(6):883-899.
43. Hanahan D, Weinberg Robert A. 2011. Hallmarks of cancer: The next generation. Cell. 144(5):646-674.
44. Hanahan D, Coussens Lisa M. 2012. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21(3):309-322.
45. Beaugerie L, Svrcek M, Seksik P, Bouvier AM, Simon T, Allez M, Brixi H, Gornet JM, Altwegg R, Beau P et al. 2013. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology. 145(1):166-175.e168.
46. Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19(11):1423-1437.
47. Condeelis J, Pollard JW. 2006. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell. 124(2):263-266.
48. Qian B-Z, Pollard JW. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell. 141(1):39-51.
49. Arvanitakis K, Koletsa T, Mitroulis I, Germanidis G. 2022. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy. CANCERS. 14(1).
50. Larionova I, Cherdyntseva N, Liu TF, Patysheva M, Rakina M, Kzhyshkowska J. 2019. Interaction of tumor-associated macrophages and cancer chemotherapy. ONCOIMMUNOLOGY. 8(7).
51. Ngambenjawong C, Gustafson HH, Pun SH. 2017. Progress in tumor-associated macrophage (tam)-targeted therapeutics. ADVANCED DRUG DELIVERY REVIEWS. 114:206-221.
52. Ovais M, Guo MY, Chen CY. 2019. Tailoring nanomaterials for targeting tumor-associated macrophages. ADVANCED MATERIALS. 31(19).
53. Pan YY, Yu YD, Wang XJ, Zhang T. 2020. Tumor-associated macrophages in tumor immunity. FRONTIERS IN IMMUNOLOGY. 11.
54. Zhou JW, Tang ZW, Gao SY, Li CY, Feng YT, Zhou XK. 2020. Tumor-associated macrophages: Recent insights and therapies. FRONTIERS IN ONCOLOGY. 10.
55. Kalluri R, Zeisberg M. 2006. Fibroblasts in cancer. Nature Reviews Cancer. 6(5):392-401.
56. Biffi G, Tuveson DA. 2021. Diversity and biology of cancer-associated fibroblasts. PHYSIOLOGICAL REVIEWS. 101(1):147-176.
57. LeBleu VS, Kalluri R. 2018. A peek into cancer-associated fibroblasts: Origins, functions and translational impact. DISEASE MODELS & MECHANISMS. 11(4).
58. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. 2020. In search of definitions: Cancer-associated fibroblasts and their markers. INTERNATIONAL JOURNAL OF CANCER. 146(4):895-905.
59. Tao LL, Huang GC, Song HZ, Chen YT, Chen LB. 2017. Cancer associated fibroblasts: An essential role in the tumor microenvironment. ONCOLOGY LETTERS. 14(3):2611-2620.
60. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. 2001. Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer1. The Journal of Immunology. 166(1):678-689.
61. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. 2013. The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory t cells and natural killer t cells. Immunology. 138(2):105-115.
62. Motz Greg T, Coukos G. 2013. Deciphering and reversing tumor immune suppression. Immunity. 39(1):61-73.
63. Fleming V, Hu XY, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. 2018. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. FRONTIERS IN IMMUNOLOGY. 9.
64. Law AMK, Valdes-Mora F, Gallego-Ortega D. 2020. Myeloid-derived suppressor cells as a therapeutic target for cancer. CELLS. 9(3).
65. Ma TM, Renz BW, Ilmer M, Koch D, Yang YH, Werner J, Bazhin AV. 2022. Myeloid-derived suppressor cells in solid tumors. CELLS. 11(2).
66. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V. 2014. Myeloid-derived suppressor cell heterogeneity in human cancers. In: Rose NR, editor. Year in immunology: Myeloid cells and inflammation. p. 47-65.
67. De Craene B, Berx G. 2013. Regulatory networks defining emt during cancer initiation and progression. NATURE REVIEWS CANCER. 13(2):97-110.
68. Lamouille S, Xu J, Derynck R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. NATURE REVIEWS MOLECULAR CELL BIOLOGY. 15(3):178-196.
69. Nieto MA, Huang RYJ, Jackson RA, Thiery JP. 2016. Emt: 2016. CELL. 166(1):21-45.
70. Yu M, Bardia A, Wittner B, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al. 2013. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. SCIENCE. 339(6119):580-584.
71. Liu JY, Ren LW, Li S, Li W, Zheng XJ, Yang YH, Fu WQ, Yi J, Wang JH, Du GH. 2021. The biology, function, and applications of exosomes in cancer. ACTA PHARMACEUTICA SINICA B. 11(9):2783-2797.
72. Soung YH, Ford S, Zhang V, Chung J. 2017. Exosomes in cancer diagnostics. CANCERS. 9(1).
73. Zhang X, Yuan X, Shi H, Wu LJ, Qian H, Xu WR. 2015. Exosomes in cancer: Small particle, big player. JOURNAL OF HEMATOLOGY & ONCOLOGY. 8.
74. Herrmann IK, Wood MJA, Fuhrmann G. 2021. Extracellular vesicles as a next-generation drug delivery platform. NATURE NANOTECHNOLOGY. 16(7):748-759.
75. Pullan JE, Confeld MI, Osborn JK, Kim J, Sarkar K, Mallik S. 2019. Exosomes as drug carriers for cancer therapy. MOLECULAR PHARMACEUTICS. 16(5):1789-1798.
76. Aguirre-Ghiso JA. 2007. Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer. 7(11):834-846.
77. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DYR et al. 2013. The perivascular niche regulates breast tumour dormancy. Nature Cell Biology. 15(7):807-817.
78. Sosa MS, Bragado P, Aguirre-Ghiso JA. 2014. Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer. 14(9):611-622.
79. Recasens A, Munoz L. 2019. Targeting cancer cell dormancy. Trends in Pharmacological Sciences. 40(2):128-141.
80. De Angelis ML, Francescangeli F, La Torre F, Zeuner A. 2019. Stem cell plasticity and dormancy in the development of cancer therapy resistance. FRONTIERS IN ONCOLOGY. 9.
81. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. 2013. Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer. 13(10):714-726.
82. Martins-Neves SR, Cleton-Jansen A-M, Gomes CMF. 2018. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacological Research. 137:193-204.
83. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168(4):707-723.
84. Kurppa KJ, Liu Y, To C, Zhang TH, Fan MY, Vajdi A, Knelson EH, Xie YT, Lim K, Cejas P et al. 2020. Treatment-induced tumor dormancy through yap-mediated transcriptional reprogramming of the apoptotic pathway. CANCER CELL. 37(1):104-+.
85. Correia AL, Guimaraes JC, Auf der Maur P, De Silva D, Trefny MP, Okamoto R, Bruno S, Schmidt A, Mertz K, Volkmann K et al. 2021. Hepatic stellate cells suppress nk cell-sustained breast cancer dormancy. NATURE. 594(7864):566-+.
86. Chan IS, Ginsburg GS. 2011. Personalized medicine: Progress and promise. Annual Review of Genomics and Human Genetics. 12(1):217-244.
87. Kosorok MR, Laber EB. 2019. Precision medicine. Annual Review of Statistics and Its Application. 6(1):263-286.
88. Aran D, Camarda R, Odegaard J, Paik H, Oskotsky B, Krings G, Goga A, Sirota M, Butte AJ. 2017. Comprehensive analysis of normal adjacent to tumor transcriptomes. NATURE COMMUNICATIONS. 8.
89. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu JG, Yue YG, Wang J, Yu K et al. 2015. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. NATURE MEDICINE. 21(5):449-U217.
90. Dietze EC, Sistrunk C, Miranda-Carboni G, O'Regan R, Seewaldt VL. 2015. Triple-negative breast cancer in african-american women: Disparities versus biology. NATURE REVIEWS CANCER. 15(4):248-254.
91. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen RL, Taylor AM, Cherniack AD, Thorsson V et al. 2018. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. CELL. 173(2):291-+.
92. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang ZS, Liu HB, Degenhardt J, Mayba O, Gnad F, Liu JF et al. 2015. A comprehensive transcriptional portrait of human cancer cell lines. NATURE BIOTECHNOLOGY. 33(3):306-+.
93. Collins FS, Varmus H. 2015. A new initiative on precision medicine. N Engl J Med. 372(9):793-795.
94. Aguado BA, Grim JC, Rosales AM, Watson-Capps JJ, Anseth KS. 2018. Engineering precision biomaterials for personalized medicine. Science Translational Medicine. 10(424):eaam8645.
95. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. 2021. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery. 20(2):101-124.
96. Aronson SJ, Rehm HL. 2015. Building the foundation for genomics in precision medicine. Nature. 526(7573):336-342.
97. Foo MA, You M, Chan SL, Sethi G, Bonney GK, Yong W-P, Chow EK-H, Fong ELS, Wang L, Goh B-C. 2022. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomarker Research. 10(1):10.
98. Voest EE, Bernards R. 2016. DNA-guided precision medicine for cancer: A case of irrational exuberance? Cancer Discovery. 6(2):130-132.
99. Siolas D, Hannon GJ. 2013. Patient-derived tumor xenografts: Transforming clinical samples into mouse models. Cancer Res. 73(17):5315-5319.
100. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. 2012. Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology. 9(6):338-350.
101. Yoshida GJ. 2020. Applications of patient-derived tumor xenograft models and tumor organoids. Journal of Hematology & Oncology. 13(1):4.
102. Driehuis E, Kretzschmar K, Clevers H. 2020. Establishment of patient-derived cancer organoids for drug-screening applications. Nature Protocols. 15(10):3380-3409.
103. Wensink GE, Elias SG, Mullenders J, Koopman M, Boj SF, Kranenburg OW, Roodhart JML. 2021. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. npj Precision Oncology. 5(1):30.
104. Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S et al. 2020. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 180(1):188-204.e122.
105. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche RE, Jang G-H et al. 2018. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discovery. 8(9):1112-1129.
106. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R et al. 2018. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359(6378):920-926.
107. Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M et al. 2020. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26(1):17-26.e16.
108. Genta S, Coburn B, Cescon DW, Spreafico A. 2022. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Frontiers in Oncology. 12.
109. Zhou Z, Cong L, Cong X. 2021. Patient-derived organoids in precision medicine: Drug screening, organoid-on-a-chip and living organoid biobank. Frontiers in Oncology. 11.
110. Harunaga JS, Yamada KM. 2011. Cell-matrix adhesions in 3d. Matrix Biology. 30(7):363-368.
111. Shao C, Liu Y, Chi J, Chen Z, Wang J, Zhao Y. 2019. Droplet microarray on patterned butterfly wing surfaces for cell spheroid culture. Langmuir. 35(10):3832-3839.
112. Nath S, Devi GR. 2016. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 163:94-108.
113. Lin B, Miao Y, Wang J, Fan Z, Du L, Su Y, Liu B, Hu Z, Xing M. 2016. Surface tension guided hanging-drop: Producing controllable 3d spheroid of high-passaged human dermal papilla cells and forming inductive microtissues for hair-follicle regeneration. ACS Applied Materials & Interfaces. 8(9):5906-5916.
114. Horman SR, To J, Orth AP, Slawny N, Cuddihy MJ, Caracino D. 2013. High-content analysis of three-dimensional tumor spheroids: Investigating signaling pathways using small hairpin rna. Nature Methods. 10(10):v-vi.
115. Laschke MW, Menger MD. 2017. Life is 3d: Boosting spheroid function for tissue engineering. Trends in Biotechnology. 35(2):133-144.
116. Unagolla JM, Jayasuriya AC. 2022. Recent advances in organoid engineering: A comprehensive review. Applied Materials Today. 29:101582.
117. Abe-Fukasawa N, Otsuka K, Aihara A, Itasaki N, Nishino T. 2018. Novel 3d liquid cell culture method for anchorage-independent cell growth, cell imaging and automated drug screening. Scientific Reports. 8(1):3627.
118. Kim M, Yun H-W, Park DY, Choi BH, Min B-H. 2018. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Engineering and Regenerative Medicine. 15(4):427-436.
119. Tong WH, Fang Y, Yan J, Hong X, Hari Singh N, Wang SR, Nugraha B, Xia L, Fong ELS, Iliescu C et al. 2016. Constrained spheroids for prolonged hepatocyte culture. Biomaterials. 80:106-120.
120. Huang Y-C, Chan C-C, Lin W-T, Chiu H-Y, Tsai R-Y, Tsai T-H, Chan J-Y, Lin S-J. 2013. Scalable production of controllable dermal papilla spheroids on pva surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials. 34(2):442-451.
121. Kim G, Jung Y, Cho K, Lee HJ, Koh W-G. 2020. Thermoresponsive poly(n-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Materials Science and Engineering: C. 115:111128.
122. Markovitz-Bishitz Y, Tauber Y, Afrimzon E, Zurgil N, Sobolev M, Shafran Y, Deutsch A, Howitz S, Deutsch M. 2010. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Biomaterials. 31(32):8436-8444.
123. Jeong GS, Song JH, Kang AR, Jun Y, Kim JH, Chang JY, Lee S-H. 2013. Surface tension-mediated, concave-microwell arrays for large-scale, simultaneous production of homogeneously sized embryoid bodies. Advanced Healthcare Materials. 2(1):119-125.
124. Yamazaki H, Gotou S, Ito K, Kohashi S, Goto Y, Yoshiura Y, Sakai Y, Yabu H, Shimomura M, Nakazawa K. 2014. Micropatterned culture of hepg2 spheroids using microwell chip with honeycomb-patterned polymer film. Journal of Bioscience and Bioengineering. 118(4):455-460.
125. Chen Y-C, Lou X, Zhang Z, Ingram P, Yoon E. 2015. High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3d cell cultures. Scientific Reports. 5(1):12175.
126. Brandenberg N, Hoehnel S, Kuttler F, Homicsko K, Ceroni C, Ringel T, Gjorevski N, Schwank G, Coukos G, Turcatti G et al. 2020. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nature Biomedical Engineering. 4(9):863-874.
127. Whitesides GM. 2006. The origins and the future of microfluidics. Nature. 442(7101):368-373.
128. Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR. 2005. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science. 309(5731):137-140.
129. Shao C, Chi J, Zhang H, Fan Q, Zhao Y, Ye F. 2020. Development of cell spheroids by advanced technologies. Advanced Materials Technologies. 5(9):2000183.
130. Liu D, Chen S, Win Naing M. 2021. A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnology and Bioengineering. 118(2):542-554.
131. Wang J, Cheng Y, Yu Y, Fu F, Chen Z, Zhao Y, Gu Z. 2015. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Applied Materials & Interfaces. 7(49):27035-27039.
132. Chan HF, Zhang Y, Leong KW. 2016. Efficient one-step production of microencapsulated hepatocyte spheroids with enhanced functions. Small. 12(20):2720-2730.
133. Ota H, Yamamoto R, Deguchi K, Tanaka Y, Kazoe Y, Sato Y, Miki N. 2010. Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sensors and Actuators B: Chemical. 147(1):359-365.
134. Ota H, Miki N. 2011. Microfluidic experimental platform for producing size-controlled three-dimensional spheroids. Sensors and Actuators A: Physical. 169(2):266-273.
135. Sakai Y, Nakazawa K. 2007. Technique for the control of spheroid diameter using microfabricated chips. Acta Biomaterialia. 3(6):1033-1040.
136. Okuyama T, Yamazoe H, Mochizuki N, Khademhosseini A, Suzuki H, Fukuda J. 2010. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. Journal of Bioscience and Bioengineering. 110(5):572-576.
137. Chen K, Wu M, Guo F, Li P, Chan CY, Mao Z, Li S, Ren L, Zhang R, Huang TJ. 2016. Rapid formation of size-controllable multicellular spheroids via 3d acoustic tweezers. Lab on a Chip. 16(14):2636-2643.
138. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. 2016. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology. 4.
139. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ. 2016. 3d tumor spheroids: An overview on the tools and techniques used for their analysis. Biotechnology Advances. 34(8):1427-1441.
140. Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. 2021. Evolution of metastasis study models toward metastasis-on-a-chip: The ultimate model? Small. 17(14):2006009.
141. Rodriguez LG, Wu X, Guan J-L. 2005. Wound-healing assay. In: Guan J-L, editor. Cell migration: Developmental methods and protocols. Totowa, NJ: Humana Press. p. 23-29.
142. Cory G. 2011. Scratch-wound assay. In: Wells CM, Parsons M, editors. Cell migration: Developmental methods and protocols. Totowa, NJ: Humana Press. p. 25-30.
143. De Ieso ML, Pei JV. 2018. An accurate and cost-effective alternative method for measuring cell migration with the circular wound closure assay. Biosci Rep. 38(5).
144. Boyden S. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. Journal of Experimental Medicine. 115(3):453-466.
145. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H. 2013. In vitro cell migration and invasion assays. Mutation Research/Reviews in Mutation Research. 752(1):10-24.
146. Sleeboom JJF, Eslami Amirabadi H, Nair P, Sahlgren CM, den Toonder JMJ. 2018. Metastasis in context: Modeling the tumor microenvironment with cancer-on-a-chip approaches. Disease Models & Mechanisms. 11(3):dmm033100.
147. Cho H-Y, Choi J-H, Kim K-J, Shin M, Choi J-W. 2021. Microfluidic system to analyze the effects of interleukin 6 on lymphatic breast cancer metastasis. Frontiers in Bioengineering and Biotechnology. 8.
148. Kim J, Lee C, Kim I, Ro J, Kim J, Min Y, Park J, Sunkara V, Park Y-S, Michael I et al. 2020. Three-dimensional human liver-chip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles. ACS Nano. 14(11):14971-14988.
149. Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. 2021. Tumor-on-a-chip: From bioinspired design to biomedical application. Microsystems & Nanoengineering. 7(1):50.
150. Hao S, Ha L, Cheng G, Wan Y, Xia Y, Sosnoski DM, Mastro AM, Zheng S-Y. 2018. A spontaneous 3d bone-on-a-chip for bone metastasis study of breast cancer cells. Small. 14(12):1702787.
151. Mao M, Bei HP, Lam CH, Chen P, Wang S, Chen Y, He J, Zhao X. 2020. Human-on-leaf-chip: A biomimetic vascular system integrated with chamber-specific organs. Small. 16(22):2000546.
152. Hafner M, Niepel M, Sorger PK. 2017. Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics. Nature Biotechnology. 35(6):500-502.
153. Hafner M, Niepel M, Chung M, Sorger PK. 2016. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nature Methods. 13(6):521-527.
154. Clark NA, Hafner M, Kouril M, Williams EH, Muhlich JL, Pilarczyk M, Niepel M, Sorger PK, Medvedovic M. 2017. Grcalculator: An online tool for calculating and mining dose–response data. BMC Cancer. 17(1):698.
155. Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J et al. 2019. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine. 11(513):eaay2574.
156. Song KW, Edgar KA, Hanan EJ, Hafner M, Oeh J, Merchant M, Sampath D, Nannini MA, Hong R, Phu L et al. 2022. Rtk-dependent inducible degradation of mutant pi3kα drives gdc-0077 (inavolisib) efficacy. Cancer Discovery. 12(1):204-219.
157. Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, DeRose YS, Zhao L, Cortes-Sanchez E, Yang C-H et al. 2022. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nature Cancer. 3(2):232-250.
158. Preparation and sterilization. 2010. Culture of animal cells. p. 133-162.
159. Paul CD, Mistriotis P, Konstantopoulos K. 2017. Cancer cell motility: Lessons from migration in confined spaces. Nature Reviews Cancer. 17(2):131-140.