研究生: |
劉俊宏 Liu, Chun Hung |
---|---|
論文名稱: |
高效能腫瘤標靶奈米載體傳遞治療基因TRAIL作為肝癌基因治療 Highly Efficient Tumor-Targeted Nanoparticles Deliver TRAIL as Gene Therapy For Hepatocellular Carcinoma |
指導教授: |
陳韻晶
Yunching Chen |
口試委員: |
王潔
魯才德 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 基因治療 、磷酸鈣載體 、細胞凋亡 、標靶治療 |
外文關鍵詞: | Gene therapy, Target specificity, Calcium phosphate nanoparticle, Apoptosis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來、基因療法 ( Gene therapy ) 用於治療癌症,已成為一種具展望性的治療策略於對抗肝癌 ( HCC ; hepatocellular carcinoma )。然而治療性核酸質體( Plasmid DNA ) 能否成功運輸至細胞內並調控癌細胞表現,是眾多研究所面臨的一大挑戰。因此在本研究中,我們利用已知對 HCC 具有標靶作用的 SP94 胜肽修飾脂質磷酸鈣奈米載體 ( Liposome Calcium Phosphate Nanoparticle ,LCPP-NPs ) 標靶肝癌細胞。藉由具有核定位訊號 ( Nuclear Localization Signal , NLS ) 魚精蛋白 ( Protamine ) 以提高轉染效果,讓癌細胞高度表達特定蛋白表現。更進一步,我們使用奈米粒子搭載具有誘導細胞凋亡的基因片段-腫瘤壞死因子相關凋亡誘導配體- TRAIL( Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand ),專一性的運輸至肝癌細胞中進行基因治療,希望能藉此讓肝癌細胞進行細胞凋亡,達到治療癌症效果。總結來說,這個具腫瘤標靶控細胞基因表現,達到顯著的基因治療目的。
Gene therapy for cancer treatment has become the very promising approach of hepatocellular carcinoma (HCC). However, the therapeutic plasmid DNA delivery into cancer cell and regulate the expression is a challenge of many studies. We utilize SP94 peptide as targeted ligand modifies liposome calcium phosphate nanoparticles (LCP-NPs) to specifically target HCC. We also use protamine to improve transfection efficiency which contains several nuclear localization signal (NLS). Moreover, we want to deliver an apoptosis inducer gene -TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) to induce tumor cell apoptosis. These results demonstrated that targeting LCP-NPs can specifically delivery therapeutic plasmid DNA into HCC to regulate cancer cell expression.
1. Torre, L. A. B., F. Siegel, R. L. Ferlay, J. Lortet-Tieulent, J. Jemal, A., Global cancer statistics, 2012. CA: a cancer journal for clinicians 2015, 65 (2), 87-108.
2. London WT, M. K. L. c. I. S. D., Fraumeni J Jr, eds., Cancer Epidemiology and Prevention. New York: Oxford University Press 2006, 3, 763-786.
3. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004,53 (10),1494–1498.
4. Hashem B. El-Serag, M. D., M.P.H., Hepatocellular Carcinoma.. The new england journa l of medicine 2011, 365,1118-1127.
5. Farazi, P. A. D., R. A., Hepatocellular carcinoma pathogenesis: from genes to environment. Nature reviews. Cancer 2006, 6 (9), 674-87.
6. Tseng PL1, T. M., Huang CC, Wang CC, Lin JW, Hung CH, Chen CH, Wang JH, Lu SN, Lee CM, Changchien CS, Hu TH., Overexpression of VEGF Is Associated With Positive p53 Immunostaining in Hepatocellular Carcinoma (HCC) and Adverse Outcome of HCC Patients. Surgical Oncology 2008, 98, 349–357
7. Zhu, A. X. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma, Cancer, 2008, 112 (2) ,250-259.
8. Goel, H. L. M., A. M., VEGF targets the tumour cell. Nature reviews. Cancer 2013, 13 (12), 871-82.
9. Srikala S. Sridhar, D. H., and Lillian L. Siu, Raf kinase as a target for anticancer therapeutics. American Association for Cancer 2005,4 (4), 677-685.
10. Liu, L. C., Y. Chen, C. Zhang, X. McNabola, A. Wilkie, D. Wilhelm, S. Lynch, M. Carter, C., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer research 2006, 66 (24), 11851-8.
11. Gu F, D. N., Kim JW, et al. , Protein tyrosine phosphatase 1B attenuatesgro wth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 2003, 23(11), 3753–62.
12. Chen, K. F. T., W. T. Liu, T. H.Huang, H. P. Lin, Y. C.Shiau, C. W. Li, P. K.Chen, P. J.Cheng,A. L., Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clinical cancer research : an official journal of the American Association for Cancer Research 2010, 16 (21), 5189-99.
13. To KF, C. M., Leung WK, et al. Br J, Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. Cancer 2004, 91, 1335–41.
14. Aguilar F, H. C., Sun T, Hollstein M, Cerutti P., Geographic variation of p53 mutational profile in nonmalignant human liver. Science 1994, 264, 1317-1319.
15. Beatson Institute for Cancer Research, G. E., Switchback Road, Bearsden, Glasgow G61, Outcomes of p53 activation – spoilt for choice. Cell Science 2006, 119, 5015-5020.
16. Hussain, S. P. S., J. Staib, F. Wang, X. W. Harris, C. C., TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 2007, 26 (15), 2166-76.
17. Xin Wei Wang, W. V., Jill D.Course en,Michael Gibson, Shawn E. Lupold, Kathleen Forrester, Guowei XU,'Lynne Elmore, Heidi Yeh, Jan H. J. Hoeijmakers, and Curtis C. Harris, The XPB and XPD DNA helicases are components of 4 the p53-mediated apoptosis pathway. GENES & DEVELOPMENT 1996, 10, 1219-1232.
18. Cheng A-L, Guan Z, Chen Z, et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma according to baseline status: subset analyses of the phase III sorafenib Asia-Pacific trial. Eur J Cancer. 2012,48,1452-1465.
19. Rivat C, et al. Gene therapy for primary immunodeficiencies. Human Gene therapy. 2012,23,668.
20. Tripathy SK; Black HB; Goldwasser E; JM., L., . Nat Med , ();, Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nature Medicine 1996, 2 545–550.
21. Antti Vaheri, J. S. P., Infectious poliovirus RNA: a sensitive method of assay. Virology 1965, 27 (3), 434-436.
22. Viktoriya V. Sokolovaa , I. R., Rolf Heumannb , Matthias Epplea,, Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 2006, 27, 3147–3153.
23. Baake M, D. D., Albig W Characterisation of nuclear localisation signals of the four human core histones. Journal of Cellular Biochemistry 2001, 81, 333-346.
24. Jans, D. J. G. L. G. H. J. L. D. A., Overcoming Barriers to Achieve Safe, Sustained and Efficient Non-Viral Gene Therapy Advances in Gene, Molecular and Cell Therapy 2007,1(2), 126-140.
25. Albert Lo, C.-T. L., and Han-Chung Wu,, Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol Cancer Ther 2008,7(3), 579-589.
26. Sokolova, V. N., S.; Kovtun, A.; Chernousova, S.; Heumann, R.; Epple, M., An outer shell of positively charged poly(ethyleneimine) strongly increases the transfection efficiency of calcium phosphate/DNA nanoparticles. Journal of Materials Science 2010, 45 (18), 4952-4957.
27. Hu, J. K., A.; Tomaszewski, A.; Singer, B. B.; Seitz, B.; Epple, M.; Steuhl, K. P.; Ergun, S.; Fuchsluger, T. A., Acta A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles.Biomaterialia2012,8(3),1156–1163.
28. E. V. Giger, J. P.-L., R. Schlatter, B. Castagner, P. S. Dittrich, J. C. Leroux,, Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of controlled release 2011, 150 (1), 87-93.
29. Bisht S, B. G., Mitra S, Maitra A, pDNA loaded calcium phosphate nanoparticles: highly efficientnon-viral vector for gene delivery. Int J Pharm 2005, 288 (1), 157–168.
30. Jun Li, Y.-C. C., Yu-Cheng Tseng, and Leaf Huang, Biodegradable Calcium Phosphate Nanoparticle with Lipid Coating for Systemic siRNA Delivery. J Control Release 2010 142 (3), 416–421.
31. Peterson BR, S. L., Verdine GL, A critical arginine residue mediates cooperativity in the contact interface between transcription factors NFAT and AP-1. Proc Natl Acad Sci USA 1996, 93, 13671-13676.
32. FL Sorgi, S Bhattacharya and L Huang, <Protamine sulfate enhances lipid-mediated gene.pdf>. Gene Therapy 1997, 4, 961–968.
33. Berkeley, Membrane Assembly: Signal Hypothesis. Cell biology 2015.
34. Diamantis A, M. E., Sakorafas GH, Androutsos G., A brief history of apoptosis: from ancient to modern times.. Onkologie 2008, 31, 702-706.
35. I., F., Dysregulation of apoptosis in hepatocellular carcinoma cells. World journal of gastroenterology : WJG 2009, 15, 513-520.
36. Andrew Thorburn, D, Tumor_Necrosis_Factor_Related_Apoptosis_Inducing. Thoracic Oncology 2007, 2 (6), 461-465.
37. Pei, Z. C., L. Zou, W. Zhang, Z. Qiu, S. Qi, R. Gu, J. Qian, C. Liu, X., An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 2004, 39 (5), 1371-81.
38. Lopez J, M. P. T. f. o. d., inhibitor of apoptosis proteins at the crossroad of innate immunity and death. Curr Opin Cell Biol 2010, 22, 872–81.
39. LK., M., An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol 1999, 9, 323–8.
40. Smolewski P1, R. T., Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies. Curr Mol Med. 2011, 8, 633-49.
41. M.C. de Almagro, D. V., The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Experimental Oncology 2012, 34, 201-11.
42. Yang L1, S. X., Wang W., Overexpression of bcl-2 protects hepatoma cell line HCC-9204 from ethanol-induced apoptosis. Chin Med J (Engl). 2002 115 (1), 8-11.
43. Lu Y1, Z. B., Jia ZX, Wu WJ, Lu ZQ., Hepatocellular carcinoma HepG2 cell apoptosis and caspase-8 and Bcl-2 expression induced by injectable seed extract of Coix lacryma-jobi. Hepatobiliary Pancreat Dis Int 2011, 10 (3), 303-7.
44. Reed1, K. W. Y. a. J. C., Bcl-2 family proteins and cancer. Oncogene 2008, 27, 6398-6406.
45. L O'Connor, A. S., L A O'Reilly, G Hausmann, J M Adams, S Cory, and D C Huang, Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO 1998 17 (2), 384-395.
46. Grant, Y. D. S., BCL2L11/Bim as a dual-agent regulating autophagy and apoptosis in drug resistance. Autophagy 2015, 11 (2 ), 416--418.
47. Qin He1, D. I. L., Rong Rong1, Myounghee Yu2, Xiuquan Luo1, Michael Klein2, Wa®k S El-Deiry3, Ying Huang1, Arif Hussain2 and M Saeed Sheikh*,1, Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 2002, 21, 2623-2633.
48. Dong-Oh Moon a, C.-H. K. b., Sang-Hyuck Kang b, Yung-Hyun Choi c, Jin-Won Hyun d, Weon-Young Chang d, Hee-Kyoung Kang d, Young-Sang Koh d, Young-Hee Maeng d, Young-Ree Kim d, Gi-Young Kim b., Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx. Toxicology and Applied Pharmacology 2012, 259, 87-95.
49. Martin R. Müller1 About the author & Anjana Rao2, 4, NFAT, immunity and cancer: a transcription factor comes of age. Nature Reviews Immunology 2010, 10, 645-656.
50. Kim W, S. J., Oh HJ, Koom WS, Choi K-J, Yun C-O. , A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. Journal of radiation research 2011, 52 (5), 646-654.
51. Yunxia Hu, M. T. H., Yuhua Wang, Feng Liu, and Leaf Huang, A Highly Efficient Synthetic Vector: Nonhydrodynamic Delivery of DNA to Hepatocyte Nuclei in Vivo. ACS Nano 2013, 7 (6), 5376–5384.
52. Grosse-Wilde, A. V., O. Bailey, S. L.Longton, G. M. Schaefer, U.Csernok, A. I. Schutz, G.Greiner, E. F. Kemp, C. J.Walczak, H., TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. The Journal of clinical investigation 2008, 118 (1), 100-10.