簡易檢索 / 詳目顯示

研究生: 洪一靈
Hung, Yi Lin
論文名稱: 蛋白質骨架動力學特性調控肝癌衍生生長因子與乙烯受體訊號調節區域之分子辨識
Protein backbone dynamics modulates molecular recognition in HDGF HATH and ETR1-RD
指導教授: 蘇士哲
Su, Shih Che
口試委員: 陳金榜
江昀瑋
鄭惠春
徐駿森
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 100
中文關鍵詞: 肝癌衍生生長因子乙烯受體訊號調節區域雙元件系統
外文關鍵詞: backbone dynamics, PWWP motif, ethylene receptor, two-component system, receiver domain
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文旨在探討兩蛋白質:人類細胞中的肝癌衍生生長因子(hHDGF)與乙烯受體之訊號調節區域(ETR1-RD)其結構與動力學的特性。
    在人類細胞中的肝癌衍生生長因子(hHDGF)中,HATH domains 是HDGF相關蛋白質家族(HDGF-related proteins, HRPs)中,一段具有高度保留性的區域,而這段區域皆包含特殊的PWWP motif 且會與肝素/硫酸乙醯肝素(heparin/heparan sulfate),DNA和甲基化的組織蛋白胜肽片段(methylated histone peptide)作鍵結來調控細胞功能。根據PWWP motif 中的第一個殘基不同可區分為兩種類型:P-類型為PHWP (Pro-His-Trp-Pro),其中P-類型為PHWP (Pro-His-Trp-Pro),HATH較穩定且皆已解出結構;A-類型為AHWP(Ala-His-Trp-Pro) ,但HATH在水溶液中較不穩定,因此我們探討兩者之間包含結構,動力學及配基結合能力的不同。根據NMR 15N 弛豫實驗分析,觀察到蛋白質骨架動態主要發生在N端的 β-barrel 及C端helix bundle之介面。在AHWP所在之 β1/β2 loop具有高度結構彈性去幫助HATH-HATH結合。在與肝素及長鏈DNA結合中,A-類型HATH展現出較高層次聚合的傾向。
    在第二個蛋白質例子中,乙烯受體(ETR1)與乙烯氣體調控多種植物生理活動。雖然其下游調控者與其分子辨識機制還未確定,目前推測乙烯受體在細胞質內的訊息,是與訊號調節區域(receiver domain,RD)有關的雙元件系統方式(two-component system,TCS)作傳遞。此論文利用NMR方法去探討乙烯受體的訊號調節區域(ETR1-RD)其結構與動力學特性。結合NMR技術所得之骨架化學位移與結構計算得知ETR1-RD在水溶液下的結構與X-ray結構是相似的,但ETR1-RD在水溶液下是單體結構而X-ray結構則是雙體。特別的是,在NMR技術中沒有觀察到ETR1-RD的磷酸化形成。與其他訊號調節區域蛋白質的動態結構相比,我們猜測蛋白質骨架的彈性會去影響磷酸化形成。而ETR1-RD在此被歸類為非典型的訊號調節區域。


    We investigated the structural and dynamic characters of two proteins in the study: Hepatoma-derived growth factor (HDGF) and receiver domain of ethylene receptor 1 (ETR1-RD).
    In the first case, HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic PWWP motif. The HATH domains have drawn attention because of the binding with heparin/heparan sulfate, DNA and methylated histone peptide. Depending on the sequence of the PWWP motif, HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro). A-type HATH is highly unstable in solution and P-type HATH has available structure. We evaluated the difference on structure, dynamics and ligand binding. Analysis of NMR backbone 15N relaxations revealed additional backbone dynamics in the interface between the b-barrel and the C-terminal helix bundle. The β1/β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction. A-type HATH, therefore, shows a tendency toward higher-order aggregation when binding with heparin and DNA oligomers.
    In the second case, ETR1, in response to ethylene, plays versatile roles in plant physiology. Although the downstream regulators have been identified, the molecular recognition remains unknown. It has been speculated that the cytoplasmic signaling of ETR1 adopts a two-component system involving the conserved receiver domain (RD). We used NMR method to investigate the structure and dynamics of ETR1-RD. Combining NMR backbone chemical shifts into the structural calculation, we defined the solution ETR1-RD structure similar to X-ray structure, but ETR1-RD is a monomer, not the dimer observed in X-ray crystal. Notably, NMR investigation reported no phosphorylation for ETR1-RD. Comparing the backbone dynamics to other receiver regulators, we suspect the backbone flexibility is critical to determine the phosphorylation property. ETR1-RD is an atypical receiver regulator.

    Abstract i 中文摘要 iii Content iv List of figures vii Abbreviations ix Chapter 1. Protein structure, function and dynamics 1 1.1 Protein structure, function and dynamics 1 1.2 Model-free formalism 2 Chapter 2. The first residues of the PWWP motif in HATHs 10 2.1 PWWP-containing proteins biomolcular NMR 10 2.2 HATH domain in HRPs 14 2.3 P-type and A-type HATH domain 16 2.3.1 Thermal stability 16 2.3.2 NMR structural characters 17 2.3.3 Protein flexibility and protein dynamics 18 2.3.4 Chemical shift difference in ligand titration. 21 2.4 Oligomer state of HATH and P24A 29 2.4.1 HATH and P24A in complex with long-chain heparin and DNA 29 2.4.2 Protein-protein interaction through β1/β2 loop 29 2.5 Discussion 34 Chapter 3. Receiver domain of ethylene receptor 1 (Etr1-RD) 41 3.1 How the ethylene influence plant 41 3.2 Character of ethylene receptor 44 3.3 Two-component system in receiver domain in ETR1 52 3.4 ETR1-RD 57 3.4.1 Solution structure 57 3.4.2 Phosphorylation ability on ETR1-RD 58 3.4.3 Dynamic parameter 60 3.4.4 Comparison of dynamics in RRs 61 3.5 Discussion 70 Chapter 4. Methods 72 4.1 PWWP and AWWP 72 4.1.1 HATH constructs and site-directed mutagenesis 72 4.1.2 Expression and purification of HATH domains 72 4.1.3 Circular Dichroism (CD) 73 4.1.4 NMR HSQC titration experiments 73 4.1.5 NMR relaxation measurements 74 4.1.6 H/D exchange experiments 75 4.2 ETR1-RD 76 4.2.1 ETR1-RD constructs and site-directed mutagenesis 76 4.2.2 Expression, and Purification of the Recombinant Proteins 76 4.2.3 NMR HSQC titration experiments 77 4.2.4 NMR relaxation measurements 77 References 79

    1. Whitford D: Proteins: structure and function: John Wiley & Sons; 2013.
    2. Huang S: Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. Journal of Molecular Medicine 1999, 77(6):469-480.
    3. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic acids research 2004, 32(suppl 1):D277-D280.
    4. Jenssen T-K, Lægreid A, Komorowski J, Hovig E: A literature network of human genes for high-throughput analysis of gene expression. Nature genetics 2001, 28(1):21-28.
    5. Hopkins AL: Network pharmacology: the next paradigm in drug discovery. Nature chemical biology 2008, 4(11):682-690.
    6. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic acids research 2010, 38(suppl 1):D355-D360.
    7. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections. World Health Organization 2001.
    8. Privalou P: Thermodynamic problems of protein structure. Annual review of biophysics and biophysical chemistry 1989, 18(1):47-69.
    9. Ross PD, Subramanian S: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 1981, 20(11):3096-3102.
    10. Kasinath V, Sharp KA, Wand AJ: Microscopic insights into the NMR relaxation-based protein conformational entropy meter. Journal of the American Chemical Society 2013, 135(40):15092-15100.
    11. Akke M: Conformational dynamics and thermodynamics of proteinligand binding studied by NMR relaxation. Biochemical Society Transactions 2012, 40(2):419.
    12. Henzler-Wildman K, Kern D: Dynamic personalities of proteins. Nature 2007, 450(7172):964-972.
    13. Bahar I, Atilgan AR, Demirel MC, Erman B: Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Physical Review Letters 1998, 80(12):2733.
    14. Case DA: Molecular dynamics and NMR spin relaxation in proteins. Accounts of chemical research 2002, 35(6):325-331.
    15. Kay LE, Torchia DA, Bax A: Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 1989, 28(23):8972-8979.
    16. Tolman JR, Al-Hashimi HM, Kay LE, Prestegard JH: Structural and dynamic analysis of residual dipolar coupling data for proteins. Journal of the American Chemical Society 2001, 123(7):1416-1424.
    17. Prestegard J, Bougault C, Kishore A: Residual dipolar couplings in structure determination of biomolecules. Chemical reviews 2004, 104(8):3519-3540.
    18. Neudecker P, Lundström P, Kay LE: Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophysical journal 2009, 96(6):2045-2054.
    19. Korzhnev DM, Neudecker P, Mittermaier A, Orekhov VY, Kay LE: Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. Journal of the American Chemical Society 2005, 127(44):15602-15611.
    20. Farber P, Darmawan H, Sprules T, Mittermaier A: Analyzing protein folding cooperativity by differential scanning calorimetry and NMR spectroscopy. Journal of the American Chemical Society 2010, 132(17):6214-6222.
    21. Schanda P, Brutscher B, Konrat R, Tollinger M: Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using 15 N/13 C relaxation dispersion and fast 1 H/2 H amide exchange NMR spectroscopy. Journal of molecular biology 2008, 380(4):726-741.
    22. Sugase K, Dyson HJ, Wright PE: Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 2007, 447(7147):1021-1025.
    23. Tzeng S-R, Kalodimos CG: Dynamic activation of an allosteric regulatory protein. Nature 2009, 462(7271):368-372.
    24. Brüschweiler S, Schanda P, Kloiber K, Brutscher B, Kontaxis G, Konrat R, Tollinger M: Direct observation of the dynamic process underlying allosteric signal transmission. Journal of the American Chemical Society 2009, 131(8):3063-3068.
    25. Popovych N, Sun S, Ebright RH, Kalodimos CG: Dynamically driven protein allostery. Nature structural & molecular biology 2006, 13(9):831-838.
    26. Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D: Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nature structural & molecular biology 2004, 11(10):945-949.
    27. Eisenmesser EZ, Bosco DA, Akke M, Kern D: Enzyme dynamics during catalysis. Science 2002, 295(5559):1520-1523.
    28. Labeikovsky W, Eisenmesser EZ, Bosco DA, Kern D: Structure and dynamics of pin1 during catalysis by NMR. Journal of molecular biology 2007, 367(5):1370-1381.
    29. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D: Intrinsic dynamics of an enzyme underlies catalysis. Nature 2005, 438(7064):117-121.
    30. Grzesiek S, Doebeli H, Gentz R, Garotta G, Labhardt AM, Bax A: Proton, carbon-13, and nitrogen-15 NMR backbone assignments and secondary structure of human interferon-. gamma. Biochemistry 1992, 31(35):8180-8190.
    31. Bloch F, Hansen WW, Packard M: The Nuclear Induction Experiment. Physical Review 1946, 70(7-8):474-485.
    32. Kleckner IR, Foster MP: GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data. Journal of biomolecular NMR 2012, 52:11-22.
    33. Lipari G, Szabo A: Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. Journal of the American Chemical Society 1982, 104(17):4546-4559.
    34. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM: Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. Journal of the American Chemical Society 1990, 112(12):4989-4991.
    35. Cole R, Loria JP: FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. Journal of biomolecular NMR 2003, 26(3):203-213.
    36. Dosset P, Hus J-C, Blackledge M, Marion D: Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. Journal of biomolecular NMR 2000, 16(1):23-28.
    37. Stec I, Nagl SB, van Ommen GJ, den Dunnen JT: The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 2000, 473(1):1-5.
    38. Qin S, Min J: Structure and function of the nucleosome-binding PWWP domain. Trends in biochemical sciences 2014, 39(11):536-547.
    39. Stec I, Wright TJ, van Ommen CJB, de Boer PAJ, van Haeringen A, Moorman AFM, Altherr MR, den Dunnen JT: WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to the Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma (vol 7, pg 1071, 1998). Human Molecular Genetics 1998, 7(9):1527-1528.
    40. Sue SC, Chen JY, Lee SC, Wu WG, Huang TH: Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 2004, 343(5):1365-1377.
    41. Chen F-F, Lin W-H, Lin S-C, Kuo J-H, Chu H-Y, Huang W-C, Chuang Y-J, Lee S-C, Sue S-C: Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology 2012, 22(5):649-661.
    42. Lukasik SM, Cierpicki T, Borloz M, Grembecka J, Everett A, Bushweller JH: High resolution structure of the HDGF PWWP domain: A potential DNA binding domain. Protein Science 2006, 15(2):314-323.
    43. Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J: Structural and histone binding ability characterizations of human PWWP domains. PloS one 2011, 6(6):e18919.
    44. Qiu C, Sawada K, Zhang X, Cheng X: The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nature Structural & Molecular Biology 2002, 9(3):217-224.
    45. Slater LM, Allen MD, Bycroft M: Structural variation in PWWP domains. J Mol Biol 2003, 330(3):571-576.
    46. Ikegame K, Yamamoto M, Kishima Y, Enomoto H, Yoshida K, Suemura M, Kishimoto T, Nakamura H: A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 1999, 266(1):81-87.
    47. Kishima Y, Yamamoto H, Izumoto Y, Yoshida K, Enomoto H, Yamamoto M, Kuroda T, Ito H, Yoshizaki K, Nakamura H: Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. Journal of Biological Chemistry 2002, 277(12):10315-10322.
    48. Wang CH, Davamani F, Sue SC, Lee SC, Wu PL, Tang FM, Shih C, Huang TH, Wu WG: Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochemical Journal 2011, 433:127-138.
    49. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. Journal of Biological Chemistry 2010, 285(34):26114-26120.
    50. Chiu L-Y, Hung K-W, Tjong S-C, Chiang Y-W, Sue S-C: NMR characterization of the electrostatic interaction of the basic residues in HDGF and FGF2 during heparin binding. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2014, 1844(10):1851-1859.
    51. Eidahl JO, Crowe BL, North JA, McKee CJ, Shkriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S: Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic acids research 2013, 41(6):3924-3936.
    52. Yu Q, Wen Z, Chen Z, Yan W, Weiwei W, Jiahai Z, Zhiyong Z, Guohong L, Yunyu S, Xiaoming T: Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochemical Journal 2012, 442(3):527-538.
    53. Musselman CA, Gibson MD, Hartwick EW, North JA, Gatchalian J, Poirier MG, Kutateladze TG: Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun 2013, 4:2969.
    54. Yang J, Everett AD: Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. BMC molecular biology 2007, 8(1):101.
    55. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007, 449(7159):248-251.
    56. van Nuland R, van Schaik F, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H: Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 2013, 6(1):12.
    57. Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y, MacKenzie F, Vedadi M, Arrowsmith CH: L3MBTL1 recognition of mono-and dimethylated histones. Nature structural & molecular biology 2007, 14(12):1229-1230.
    58. Kalakonda N, Fischle W, Boccuni P, Gurvich N, Hoya-Arias R, Zhao X, Miyata Y, Macgrogan D, Zhang J, Sims J: Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene 2008, 27(31):4293-4304.
    59. Vezzoli A, Bonadies N, Allen MD, Freund SM, Santiveri CM, Kvinlaug BT, Huntly BJ, Göttgens B, Bycroft M: Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nature structural & molecular biology 2010, 17(5):617-619.
    60. Dietz F, Franken S, Yoshida K, Nakamura H, Kappler J, Gieselmann V: The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 2002, 366:491-500.
    61. Enomoto H, Yoshida K, Kishima Y, Kinoshita T, Yamamoto M, Everett AD, Miyajima A, Nakamura H: Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 2002, 36(6):1519-1527.
    62. Kishima Y, Yoshida K, Enomoto H, Yamamoto M, Kuroda T, Okuda Y, Uyama H, Nakamura H: Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatogastroenterology 2002, 49(48):1639-1644.
    63. Hu TH, Huang CC, Liu LF, Lin PR, Liu SY, Chang HW, Changchien CS, Lee CM, Chuang JH, Tai MH: Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 2003, 98(7):1444-1456.
    64. Abouzied MM, Baader SL, Dietz F, Kappler J, Gieselmann V, Franken S: Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 2004, 378(Pt 1):169-176.
    65. Everett AD, Yang J, Rahman M, Dulloor P, Brautigan DL: Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC cell biology 2011, 12(1):15.
    66. Abouzied MM, El‐Tahir HM, Gieselmann V, Franken S: Hepatoma‐derived growth factor‐related protein‐3: A new neurotrophic and neurite outgrowth‐promoting factor for cortical neurons. Journal of neuroscience research 2010, 88(16):3610-3620.
    67. Wu X, Daniels T, Molinaro C, Lilly M, Casiano C: Caspase cleavage of the nuclear autoantigen LEDGF/p75 abrogates its pro-survival function: implications for autoimmunity in atopic disorders. Cell death and differentiation 2002, 9(9):915-925.
    68. Zhang J, Ren H, Yuan P, Lang W, Zhang L, Mao L: Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 2006, 66(1):18-23.
    69. Yoshida K, Nakamura H, Okuda Y, Enomoto H, Kishima Y, Uyama H, Ito H, Hirasawa T, Inagaki S, Kawase I: Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 2003, 18(11):1293-1301.
    70. Matsuyama A, Inoue H, Shibuta K, Tanaka Y, Barnard GF, Sugimachi K, Mori M: Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res 2001, 61(15):5714-5717.
    71. Wang KL-C, Li H, Ecker JR: Ethylene biosynthesis and signaling networks. The Plant Cell 2002, 14(suppl 1):S131-S151.
    72. Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 1984, 35(1):155-189.
    73. Binder BM: The ethylene receptors: Complex perception for a simple gas. Plant Science 2008, 175(1):8-17.
    74. Guo H, Ecker JR: The ethylene signaling pathway: new insights. Current opinion in plant biology 2004, 7(1):40-49.
    75. Bleecker AB: The ethylene–receptor family from Arabidopsis: structure and function. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 1998, 353(1374):1405-1412.
    76. Benavente LM, Alonso JM: Molecular mechanisms of ethylene signaling in Arabidopsis. Molecular Biosystems 2006, 2(3-4):165-173.
    77. McDaniel BK, Binder BM: Ethylene receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. Journal of Biological Chemistry 2012, 287(31):26094-26103.
    78. Wang W, Esch JJ, Shiu S-H, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB: Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. The Plant Cell Online 2006, 18(12):3429-3442.
    79. Gamble RL, Coonfield ML, Schaller GE: Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proceedings of the National Academy of Sciences 1998, 95(13):7825-7829.
    80. Müller-Dieckmann H-J, Grantz AA, Kim S-H: The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 1999, 7(12):1547-1556.
    81. Chen Y-F, Randlett MD, Findell JL, Schaller GE: Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry 2002, 277(22):19861-19866.
    82. Arai M, Mitsuke H, Ikeda M, Xia J-X, Kikuchi T, Satake M, Shimizu T: ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic acids research 2004, 32(suppl 2):W390-W393.
    83. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB: Protein disorder prediction: implications for structural proteomics. Structure 2003, 11(11):1453-1459.
    84. Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB: The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. Journal of Biological Chemistry 1995, 270(21):12526-12530.
    85. Binder BM, Rodríguez FI, Bleecker AB: The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. Journal of Biological Chemistry 2010, 285(48):37263-37270.
    86. Rodrıguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB: A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999, 283(5404):996-998.
    87. Wang W, Hall AE, O'Malley R, Bleecker AB: Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proceedings of the National Academy of Sciences 2003, 100(1):352-357.
    88. Qu X, Schaller GE: Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiology 2004, 136(2):2961-2970.
    89. Cho Y-H, Yoo S-D: ETHYLENE RESPONSE 1 histidine kinase activity of Arabidopsis promotes plant growth. Plant physiology 2007, 143(2):612-616.
    90. Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ: Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. The Plant Journal 2003, 33(2):221-233.
    91. Foussard M, Cabantous S, Pédelacq J-D, Guillet V, Tranier S, Mourey L, Birck C, Samama J-P: The molecular puzzle of two-component signaling cascades. Microbes and infection 2001, 3(5):417-424.
    92. Robinson VL, Buckler DR, Stock AM: A tale of two components: a novel kinase and a regulatory switch. Nature Structural & Molecular Biology 2000, 7(8):626-633.
    93. West AH, Stock AM: Histidine kinases and response regulator proteins in two-component signaling systems. Trends in biochemical sciences 2001, 26(6):369-376.
    94. Chang C, Stewart RC: The two-component system regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiology 1998, 117(3):723-731.
    95. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 1993, 262(5133):539-544.
    96. Cho HS, Lee S-Y, Yan D, Pan X, Parkinson JS, Kustu S, Wemmer DE, Pelton JG: NMR structure of activated CheY. Journal of molecular biology 2000, 297(3):543-551.
    97. Lee S-Y, Cho HS, Pelton JG, Yan D, Berry EA, Wemmer DE: Crystal structure of activated CheY comparison with other activated receiver domains. Journal of Biological Chemistry 2001, 276(19):16425-16431.
    98. Rombel I, Peters-Wendisch P, Mesecar A, Thorgeirsson T, Shin Y-K, Kustu S: MgATP binding and hydrolysis determinants of NtrC, a bacterial enhancer-binding protein. Journal of bacteriology 1999, 181(15):4628-4638.
    99. Luo S-C, Lou Y-C, Cheng H-Y, Pan Y-R, Peng H-L, Chen C: Solution structure and phospho-PmrA recognition mode of PmrD from Klebsiella pneumoniae. Journal of structural biology 2010, 172(3):319-330.
    100. Tzeng Y-L, Hoch JA: Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. Journal of molecular biology 1997, 272(2):200-212.
    101. Gao T, Zhang X, Ivleva NB, Golden SS, LiWang A: NMR structure of the pseudo‐receiver domain of CikA. Protein science 2007, 16(3):465-475.
    102. Williams SB, Vakonakis I, Golden SS, LiWang AC: Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proceedings of the National Academy of Sciences 2002, 99(24):15357-15362.
    103. Hong E, Lee HM, Ko H, Kim D-U, Jeon B-Y, Jung J, Shin J, Lee S-A, Kim Y, Jeon YH: Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. Journal of Biological Chemistry 2007, 282(28):20667-20675.
    104. Hung Y-L, Lin Y-J, Sue S-C: 13C, 15N and 1H resonance assignments of receiver domain of ethylene receptor ETR1. Biomolecular NMR assignments 2015, 9(1):119-122.
    105. Wemmer DE, Kern D: Beryllofluoride binding mimics phosphorylation of aspartate in response regulators. Journal of bacteriology 2005, 187(24):8229-8230.
    106. Hastings CA, Lee S-Y, Cho HS, Yan D, Kustu S, Wemmer DE: High-resolution solution structure of the beryllofluoride-activated NtrC receiver domain. Biochemistry 2003, 42(30):9081-9090.
    107. Yan D, Cho HS, Hastings CA, Igo MM, Lee S-Y, Pelton JG, Stewart V, Wemmer DE, Kustu S: Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proceedings of the National Academy of Sciences 1999, 96(26):14789-14794.
    108. Feher VA, Zapf JW, Hoch JA, Dahlquist FW, Whiteley JM, Cavanagh J: 1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnesium‐binding characteristics of the bacillus subtilis response regulator, SpoOF, determined by heteronuclear high‐resolution NMR. Protein Science 1995, 4(9):1801-1814.
    109. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A: NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995, 6(3):277-293.
    110. Goddard TD, Kneller DG: SPARKY 3. University of California, San Francisco.
    111. Tjandra N, Feller SE, Pastor RW, Bax A: Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. Journal of the American Chemical Society 1995, 117(50):12562-12566.
    112. Huang Y-T, Liaw Y-C, Gorbatyuk VY, Huang T-H: Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. Journal of molecular biology 2001, 307(4):1075-1090.
    113. Hiyama Y, Niu CH, Silverton JV, Bavoso A, Torchia DA: Determination of 15N chemical shift tensor via 15N-2H dipolar coupling in Boc-glycylglycyl [15N glycine] benzyl ester. Journal of the American Chemical Society 1988, 110(8):2378-2383.
    114. Englander SW, Sosnick TR, Englander JJ, Mayne L: Mechanisms and uses of hydrogen exchange. Current Opinion in Structural Biology 1996, 6(1):18-23.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE