簡易檢索 / 詳目顯示

研究生: 黃昶文
Huang, Chang-Wen
論文名稱: 做為電化學多巴胺感測之奈米壓印電極及CMOS感測電路
Electrochemical Dopamine Sensors Based on Nanoimprinted Microelectrodes with a CMOS detection Circuit
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: nanoimprintDopamineElectrochemical Oxidation ReductionParkinson’s diseaseIDAs
外文關鍵詞: 奈米壓印, 多巴胺, 氧化還原法, 帕金森氏症, 指叉電極
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的是利用奈米壓印製作一高感測度之感測電極晶片,並配合電
    容式感測電路以實現具備即時監測、定量之低成本多巴胺(dopamine)感測晶
    片。因為要達到高感測度需要將指叉狀電極(Interdigital Array
    Electrodes ,IDA Electrdes)之間的間距縮小,為了將電極之製作成本降低
    並減少製作時間,所以我們採用奈米壓印(Nanoimprint Lithography,NIL)技
    術來製作奈米等級間距的電極, 並使用電化學氧化還原法(Oxidation
    Reduction)來感測多巴胺。
    為了電極間的絕緣,我們將電極製作在經電漿輔助化學氣相沉積(PECVD)
    氮化矽之矽基板上,經由奈米壓印、氧氣電漿(O2 Plasma)蝕刻、鉻/金熱蒸鍍
    (Evaporator)、Lift-off、黃光等步驟完成電極製作後,不同濃度之多巴胺
    便可經由此電極晶片因電化學氧化還原產生不同之訊號電流,由儀器觀察電
    流後便可由電流得到所量測之多巴胺濃度。最後在配合一互補式金屬氧化半
    導體(Complementary Metal Oxide Semiconductor , CMOS)電路放大電流並
    對電容充放電轉換成電壓訊號,在同樣充電時間下因不同電流得到不同電壓
    訊號,藉此判讀多巴胺濃度。
    藉由奈米壓印技術,我們得到一電極間距300 nm 的指叉狀電極,此電極
    之感測度在多巴胺濃度0.5 μM 下,可產生1.26nA 訊號電流,配合放大電路,
    理論上的多巴胺感測濃度最低可以到0.1μM
    關鍵字:奈米壓印、多巴胺、氧化還原法、帕金森氏症、指叉電極。


    目錄 摘要 致謝 目錄 表目錄 圖目錄 第一章 序論 1.1 研究動機 1.2 奈米壓印微影技術簡介 1.3 文獻回顧 第二章 量測理論與設計 2.1 感測器原理與設計 2.1.1 電化學氧化還原與反應 2.1.2 循環伏安法(cyclic voltammetry) 2.1.3 感測器之分析、設計 2.2 奈米壓印微影技術 2.2.1 模具製備 2.2.2 塗布脫模劑 2.2.3 PMMA塗布與配置 2.2.4 PMGI塗佈與配置 2.2.5 進行壓印 2.2.6 壓印結果 2.2.7 蝕刻PMMA 2.2.8 TMAH蝕刻製做Undercut 2.2.9 Lift-off製作電極 第三章 量測結果 3.1 感測電極晶片量測果 3.2 與電容式感測電路配合量測結果 第四章 結論 4.1 研究結果與討論 4.2 建議與未來工作

    [1] The Nobel Prize in Physiology or Medicine 2000.
    http://nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html
    [2] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25
    nm vias and trenches in polymers”, Appl. Phys. Lett.67, pp. 3114, 1995.
    [3] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint Lithography
    with 25-Nanometer Resolution”, Science, vol.272,pp. 85, 1996.
    [4] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Nanoimprint
    lithography”, J. Vac. Sci. Technol. B vol. 14, pp. 4129 , 1996.
    [5] Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei
    Zhuang,"Sub-10 nm imprint lithography and applications",Journal of Vaccum
    Science and Technology B,vol. 15 (6),pp. 2897-2904, 1997.
    [6] H. C. Scheer and H. Schulz, “Problems of the nanoimprinting technique for
    nanometer scale pattern definition,” Journal of Vacuum Science and Technology B,
    vol. 16 (6), pp. 3917-3921, 1998.
    [7] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake,
    T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and Flash
    Imprint Lithography: A New Approach to High-Resolution Patterning,”
    Proceedings of the SPIE, vol. 3676, pp. 379-389, 1999.
    .
    [8] Xia, Y. and Whitesides, G.M., “Soft Lithography,” Angew. Chem. Int. Ed., vol. 37,
    pp. 550-575, 1998.
    [9] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee,
    “Nanoimprinting over topography and multilayer three-dimensional printing,”
    Journal of Vacuum Science and Technology B, vol. 20, No. 6, pp. 2881-2886,
    2002.
    67
    [10] Zhang LH, Teshima N, Hasebe T, Kurihara M, Kawashima T., “Flow-injection
    determination of trace amounts of dopamine by chemiluminescence detection,”
    Talanta vol. 50, pp. 677-683, 1999.
    [11] I. C. Vieira and O. Fatibello-Filho, “Pectrophotometric determination of
    methyldopa and dopamine in pharmaceutical formulations using a crude extract
    of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source,” Talanta,
    vol. 46, pp. 559-564, 1998
    [12] P. Nagaraja, R.A. Vasantha and K.R. Sunitha, “A sensitive and selective
    spectrophotometric estimation of catechol derivatives in pharmaceutical
    preparations ,” Talanta, vol. 55, pp. 1039-1046, 2001.
    [13] F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, and B.
    Madea,“Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol
    andnorsalsolinol in various human brain areas using solid-phase extraction and
    gaschromatography/mass spectrometry,” Forensic Sci. Int., 113, pp. 359-366,
    2000.
    [14] T. J. Panholzer, J. Beyer, and K. Lictwald, “Coupled-column liquid
    chromatographic analysis of catecholamines, serotonin, and metabolites in
    human urine,” Clin Chem,45, pp. 262, 1999
    [15] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, and L. Masotti,
    “Determination of catecholamines in human plasma by high-performance liquid
    chromatography with electrochemical detection,” J. Chromatogr. B, 730:201,
    1999. [16] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D.
    O’Hare, J. Chromatogr. B, 818, pp. 269, 2005.
    [17] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D. O’Hare, “Simple
    and rapid determination of serotonin and catecholamines in biological tissue
    using high-performance liquid chromatography with electrochemical detection,”
    J. Chromatogr. B, 818, pp. 269-276, 2005.
    [18] P. R. Roy, T. Okajima, and T. Ohsaka, “Simultaneous electroanalysis of
    dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified
    electrodes,” Bioelectrochem., 59, pp. 11-19, 2003.
    68
    [19] M. Sotomayor, A. A. Tanaka, L. T. Kubota, “Development of an amperometric
    sensor highly selective for dopamine and analogous compounds determination
    using bis(2,2 -Bipyridil)copper(II)chloride complex,” Electroanalysis, 15, pp.
    787-796, 2003.
    [20] T. J. Castilho, M. Sotomayor, and L. T. Kubota, “Amperometric biosensor based
    on horseradish peroxidase for biogenic amine determinations in biological
    samples,” J. Pharm Biomed Anal, 37(4), pp. 785-791, 2005.
    [21] K. Miyazaki, G. Matsumoto, M. Yamada, S. Yasui, and H. Kaneko,
    “Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin
    with ascorbic acid on the GRC electrode,” Electrochim Acta, 44, pp. 3809-3820,
    1999.
    [22] J. M. Zen and P. J. Chen, “An ultrasensitive voltammetric method for dopamine
    and catechol detection using clay-modified electrodes,” Electroanalysis, 10, pp.
    12-15, 1998.
    [23] J. M. Zen, W. M. Wang, and G. Ilangovan, “Adsorptive potentiometric stripping
    analysis of dopamine on clay-modified electrode,” Anal Chim Acta, 372, pp.
    315-321, 1998.
    [24] R. L. Aponte, J. A. Diaz, A. A. Pereira, and V. G. Diaz, “Simple thin layer
    chromatography method with fiber Optic remote sensor for fluorimetric
    Quantification of Tryptophan and Related Metabolites,” J. Liq Chromatogr.
    Relat. Technol. 19, pp. 687-698, 1996
    [25] L. Gorton, E. Domınguez, “Electrocatalytic oxidation of NAD(P)H at
    mediator-modified electrodes,” Reviews in Molecular Biotechnology 82, pp.
    371-392, 2002
    [26] J. Wang, M. Li, Z. Shi, N. Li and Z. Gu, “Electrocatalytic oxidation of
    norepinephrine at a glassy carbon electrode modified with single wall carbon
    nanotubes,” Electroanalysis, vol. 14, pp. 225-230, 2002
    [27] M. D. Rubianes and G. A. Rivas, “Highly selective dopamine quantification using
    a glassy carbon electrode modified with a melanin-type polymer,” Anal Chim Acta,
    vol. 440, pp. 99-108, 2001.
    [28] J. Wang and A. Walcarius, “Zeolite-modified carbon paste electrode for selective
    onitoring of dopamine,” J. Electroanal. Chem. vol. 407, pp. 183-187, 1996.
    69
    [29] J. W. Mo and B. Ogorevc, “Simultaneous measurement of dopamine and
    ascorbate at their physiological levels using voltammetric microprobe based on
    overoxidized poly(1,2-phenylenediamine)-coated carbon fiber,” Anal. Chem.
    vol. 73, pp. 1196-1202, 2001.
    [30] S. M. Chen and K. C. Lin, “The electrocatalytic properties of biological
    molecules using polymerized luminol film-modified electrodes,” J. Electroanal.
    Chem. vol. 523, pp. 93-105, 2002.
    [31] M Chicharro, A Sánchez, A Zapardiel, MD Rubianes, and G. Rivas, “Capillary
    electrophoresis of neurotransmitters with amperometric detection at melanin-type
    polymer-modified carbon electrodes,” Anal. Chim. Acta 523, pp. 185-191, 2004.
    [32] R. Aguilar, M. M. Dávila, M.P. Elizalde, J. Mattusch and R. Wennrich,
    “Capability of a carbon–polyvinylchloride composite electrode for the detection
    of dopamine, ascorbic acid and uric acid,” Electrochim. Acta 49, pp. 851-859,
    2004.
    [33] S. M. Chen and K. T. Peng, “The electrochemical properties of dopamine,
    epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II)
    hexacyanoferrate films,” J. Electroanal. Chem. vol. 547, pp. 179-189, 2003. [34]
    F. Lisdat, U. Wollenberger, A. Makower, H. Hörtnagl, D. Pfeiffer, and F. W.
    Scheller, Biosens Bioelectron. vol. 12, pp. 1199, (1997)
    [35] Skoog, D. A.; Holler, F. J.; Nieman, T. A. “Principles of Instrumental nalysis,”5
    th ed; Harcourt Brace College: USA, (1998).
    [36] H. Suzuki, T. Hirakawa, S. Sakaki, and I. Karube, “An integrated three-electrode
    system with a micromachined liquid-junction Ag/AgCl reference electrode,”
    Anal. Chim. Acta, vol. 387, pp. 103-112, 1999.
    [37] S.I. Park, S.B. Jun, S. Park, H.C. Kim and S.J. Kim, “Application of a new
    Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose
    sensor,” IEEE Sens. J. 3, pp. 267-273, 2003.
    [38] R. Kurita, H. Tabei, Z. Liu, T. Horiuchi, and O. Niwa, “Fabri-cation and
    electrochemical properties of an interdigitated array electrode in a
    microfabricated wall-jet cell,” Sens. Actuators B, Chem., vol. B71, no. 1\-2,
    pp.82-89, 2000.
    70
    [39] R. Thewes et al, “Sensor arrays for fully electronic DNA detection on CMOS,”
    ISSCC, Digest of Tech. Papers, pp. 350-351, 2002.
    [40] F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer,
    D.D.J. Kuhlmeier, J. Krause, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht,
    K. Plehnert, G. Eckstein and R. Thewes, “Fully electronic DNA detection on a
    CMOS chip: device and process issues.” Tech. Dig., Int. Electron Devices Meet.,
    pp. 488-491, 2002.
    [41] M. Paeschke, U. Wollenberger, T. Lisec, U. Schnakenberg and R. Hintsche,
    “Highly sensitive electrochemical microsensors using submicrometer electrode
    arrays,” Sens. Actuators, B 26-27, pp. 394-397, 1995.
    [42] K. Aoki, M. Morita, O. Niwa, H. Tabei, “Quantitative analysis of reversible
    diffusion-controlled currents of redox soluble species at interdigitated array
    electrodes under steady-state conditions,” J. Electroanal. Chem. vol. 256, 269-282,
    1988.
    [43] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil and L.
    Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint
    lithography”, Microelectronic Engineering .vol. 61-62, pp. 441. 2002.
    [44] Nishino, T., M. Meguro, K. Nakamae, M.Matsushita, Y. Ueda. “The lowest
    surfacefree energy based on -CF3 alignment”. Langmuir, vol.15, pp. 4321-4323,
    1999.
    [45] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T.G.I. Ling, M. Keil, and L.
    Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint
    lithography,” Microelectronic Engineering, vol. 61-62, pp. 441-448, 2002.
    [46] 譚鴻志,(2008),”應用奈米壓印技術和自組裝硬式遮罩製作表面聲波元件之
    研究”,暨南大學96年碩士論文。
    [47] CH. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P. Carlberg, I. Maximov, F. Reuther,
    E. L. Sarwe, S. Zankovich, J. Ahopelto, L. Montelius,C. Mayer and M.
    Sotomayor Torres” Fluorescence microscopy for quality control in nanoimprint
    lithography”, Microelectronic Engineering,vol. 67-68, pp.623-628, 2003.
    71
    [48] 詹豐林,(2008),”使用電化學法配合互補式金屬氧化半導體電路之多巴胺定
    量感測器”,清華大學96年碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE