簡易檢索 / 詳目顯示

研究生: 柯乃元
Nai-Yuan Ko
論文名稱: 橋接簡易與高複雜度無線感測網路標準之基礎架構設計
Infra-structure Support for Bridging Simple and Complex Wireless Sensor Network Standards
指導教授: 周百祥
Pai H. Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 80
中文關鍵詞: 無線感測器網路通訊協定基礎架構
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測器網路是一種以感測器所構成的分佈式自主系統的無線網路。無線感測器網路目前已使用在許多現實生活中的應用領域,例如環境生態監控,醫療保健應用,家庭自動化,交通控制等。目前已存在著許多不同的無線感測器網路通訊協定,這些通訊協定有些是朝標準化邁進,有些則是針對不同的感測器以及應用設計客製化的協定。不同的無線感測器網路通訊協定讓使用者能夠在豐富的功能性以及客製化之間做取捨。為了結合這兩種方法的優點,我們的做法是提供了一個基礎架構的系統,用以橋接簡易和高複雜度的無線感測器網路通訊協定。為了證明了這個基礎架構的可行性,我們示範將ZigBee通訊協定和Eco平台做結合。要使資源限制很嚴苛的Eco平台,與ZigBee網絡整合,我們除了橋接兩種網路的無線封包外,也替每個Eco平台建立一個虛擬的ZigBee身份,使得其他的ZigBee節點以為Eco是另一個真實的ZigBee節點。為了克服Eco平台缺乏多跳能力的問題,我們設計了一個輕便且能夠在不同的閘道器之間快速換手的通訊協定。實驗結果證明,我們的基礎架構的確可以正確且有效率地橋接簡易以及高複雜度的無線感測器網路通訊協定並且可以支援大量的感測器節點。


    Abstract i Acknowledgments ii Contents iii 1 Introduction 1 1.1 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Meeting Application Requirements . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Solution: Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Works 6 2.1 Infrastructural WSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Heterogeneous WSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Node Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Range-based localization . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Range-free localization . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Localization in mobile networks . . . . . . . . . . . . . . . . . . . . . 9 3 Background 10 3.1 EZ-Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1.1 LM-2400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1.2 Gateway main board . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Software modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2.1 RadioPulse Software Module . . . . . . . . . . . . . . . . . 12 3.1.2.2 Gateway Software Modules . . . . . . . . . . . . . . . . . . 12 3.1.2.3 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Profile concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2.1 Node descriptor . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2.2 Node power descriptor . . . . . . . . . . . . . . . . . . . . . 15 3.2.2.3 Simple descriptor . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Message format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3.1 KVP message . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3.2 MSG message . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Eco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2.1 RF transceiver . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2.2 Internal memory . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Technical Approach 20 4.1 Goals, Assumptions, and Limitations . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1 Multiple Access for Simple Standard . . . . . . . . . . . . . . . . . . 22 4.2.2 Assessment of Link Quality and Gateway Choice . . . . . . . . . . . 23 4.2.3 Handoff Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.4 Rejoining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.5 Bridging with ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 System Design 28 5.1 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.1 Node Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.2 Node Handoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Eco Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.1 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3 Data Base Transceiver Station . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4 Control Base Transceiver Station . . . . . . . . . . . . . . . . . . . . . . . . 34 5.5 ZigBee Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.6 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.7 Lookup Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.7.1 Node Handoff Schedule Center (NHSC) . . . . . . . . . . . . . . . . . 37 5.7.1.1 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.7.1.2 Load Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.7.2 Node Information Database (NIDB) . . . . . . . . . . . . . . . . . . . 40 5.7.2.1 NodeID assignment . . . . . . . . . . . . . . . . . . . . . . . 41 5.7.2.2 EndPoint bitmap . . . . . . . . . . . . . . . . . . . . . . . . 41 5.7.2.3 Location Vector . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.7.2.4 Node state machine . . . . . . . . . . . . . . . . . . . . . . 42 5.7.3 Message Routing System (MRS) . . . . . . . . . . . . . . . . . . . . . 44 5.7.3.1 ZigBee routes to EcoMAC . . . . . . . . . . . . . . . . . . . 44 5.7.3.2 EcoMAC routes to ZigBee . . . . . . . . . . . . . . . . . . . 44 6 Implementation 45 6.1 ZigBee Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2.1 ZigBee Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2.1.1 API Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.1.2 Implementation issue . . . . . . . . . . . . . . . . . . . . . . 48 6.2.2 ZigBee EcoNet Translator (ZENT) . . . . . . . . . . . . . . . . . . . 49 6.2.2.1 Message format . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2.2 API Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2.3 Implementation issue . . . . . . . . . . . . . . . . . . . . . . 51 6.3 Lookup Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.1.1 Eco Node Table . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.1.2 Gateway Table . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.2 LS-Gateway communication packet format . . . . . . . . . . . . . . . 55 6.3.3 Function description . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.3.1 LS_GWJoinReQ_Handler() . . . . . . . . . . . . . . . . . . . . 56 6.3.3.2 LS_EcoJoinReQ_Handler() . . . . . . . . . . . . . . . . . . . 57 6.3.3.3 LS_EcoHandoffReQ_Handler() . . . . . . . . . . . . . . . . . 57 6.3.3.4 LS_DeliveryRatioRep_Handler() . . . . . . . . . . . . . . . 58 6.3.3.5 LS_EcoNearbyInd_Handler() . . . . . . . . . . . . . . . . . . 59 6.3.3.6 LS_Z2EMessageRouteReQ_Handler() . . . . . . . . . . . . . . 60 6.3.3.7 LS_E2ZMessageRouteReQ_Handler() . . . . . . . . . . . . . . 60 6.3.3.8 LS_HandoffProc_Selection() . . . . . . . . . . . . . . . . . 61 6.3.3.9 LS_Message_Routing() . . . . . . . . . . . . . . . . . . . . . 62 6.3.4 Implementation issue . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.4.1 Delay of Ethernet . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.4.2 Update of Location Vector . . . . . . . . . . . . . . . . . . . 63 7 Evaluation 65 7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.2.1 Latency of The Handoff Processes . . . . . . . . . . . . . . . . . . . . 67 7.2.1.1 Scheduling Algorithm Comparison . . . . . . . . . . . . . . 67 7.2.1.2 Latency of Each Queue Level . . . . . . . . . . . . . . . . . 68 7.2.2 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2.3 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8 Conclusions and Future Works 73

    [1] Amir, Y., Danilov, C., Hilsdale, M., Musloiu-Elefteri, R., and Rivera, N. Fast hando for seamless wireless mesh networkss. In International Conference On Mobile Systems, Applications And Services (2006).
    [2] Bahl, P., and Padmanabhan, V. N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of Infocom (2000).
    [3] Bulusu, N., Heidemann, J., and Estrin, D. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine (2000).
    [4] Dragos, N., and Nath, B. Ad hoc positioning system (APS) using AoA. In Proceedings of Annual Joint Conference of the IEEE Computer and Communications Societies (Apr. 2003).
    [5] Duarte-Melo, E. J., and Liu, M. Analysis of energy consumption and lifetime of heterogeneous wireless sensor networks. In Proceedings of Global Telecommunications
    Conference (GLOBECOM) (Nov. 2002).
    [6] Dunkels, A., Osterlind, F., and He, Z. An adaptive communication architecture for wireless sensor networks. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys) (Nov. 2007).
    [7] et al., A. A. ExScal: Elements of an extreme scale wireless sensor network. In Proceedings of the IEEE International Conference on Real-Time and Embedded Computing
    Systems and Applications (RTCSA) (Aug. 2005).
    [8] et al., R. G. Experiences with the extensible sensing system ESS. Tech. rep., Mar. 2006.
    [9] Gnawali, O., Greenstein, B., Jang, K.-Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan, R., and Kohler, E. The TENET architecture for tiered sensor networks. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys) (Nov. 2006).
    [10] He, T., Huang, C., Blum, B., Stankovic, J. A., and Abdelzaher, T. Range-free localization schemes in large-scale sensor networks. In Proceedings of the ACM Conference on Mobile Computing and Networking (MOBICOM) (Aug. 2003).
    [11] Ke, J.-Y. Ecomac: A fast-handoff, collision-free, lightweight mac protocol for multi-channel heterogeneous wireless sensor networks. Master's thesis, National Tsing Hua
    University, 2008.
    [12] Kottapalli, V. A., Kiremidjian, A. S., Lynch, J. P., Carryer, E., Kenny, T. W., Law, K. H., and Lei, Y. Two-tiered wireless sensor network architecture for structural health monitoring. In Proceedings on SPIE - Smart Structures and Materials: Smart Systems and Nondestructive Evaluation for Civil Infrastructures (Aug. 2003).
    [13] Liu, B., Liu, Z., and Towsley, D. On the capacity of hybrid wireless networks. In Proceedings of Annual Joint Conference of the IEEE Computer and Communications
    Societies (Mar. 2003).
    [14] Lorincz, K., and Welsh, M. MoteTrack: A robust, decentralized approach to RF-based location tracking. In Proceedings of Intl. Workshop on Location and Context-
    Awareness (2005).
    [15] Moore, D., Leonard, J., Rus, D., and Teller, S. Robust distributed network localization with noise range measurements. In Proceedings of the ACM Conference on
    Embedded Networked Sensor Systems (SenSys) (Nov. 2004).
    [16] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. The Cricket location-support system. In Proceedings of the ACM Conference on Mobile Computing and Networking (MOBICOM) (Aug. 2000).
    [17] Rhee, S., Seetharam, D., and Liu, S. Techniques for minimizing power consumption in low data-rate wireless sensor networks. In Proceedings of the IEEE Wireless Communication and Networking Conference(WCNC) (Mar. 2004).
    [18] Savvides, A., Han, C.-C., and Strivastava, M. B. Dynamic ne-grained localization in adhoc networks of sensors. In Proceedings of the ACM Conference on Mobile Computing and Networking (MOBICOM) (Aug. 2001).
    [19] Smaragdakis, G., Matta, I., and Bestavros, A. SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Second International Workshop on Sensor and Actor Network Protocols and Applications (SANPA 2004) (Aug. 2004).
    [20] Stoleru, R., He, T., Stankovic, J. A., , and Luebke, D. A high-accuracy, low-cost localization system for wireless sensor networks. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys) (Nov. 2005).
    [21] Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., and Culler, D. An analysis of a large scale habitat monitoring application. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys) (Nov. 2004).
    [22] Tilak, S., Kolar, V., Abu-Ghazaleh, N. B., and Kang, K.-D. Dynamic localization control for mobile sensor networks. In Proceedings of IEEE International Performance, Computing, and Communications Conference (IPCCC) (2005).
    [23] Welsh, E., Fish, W., and Frantz, J. P. GNOMES: A testbed for low power heterogeneous wireless sensor networks. In Circuit and Systems. Proceedings of the 2003 International Symposium on (May 2003).
    [24] Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., and Singh, S. Exploiting heterogeneity in sensor networks. In Proceedings of Annual Joint Conference of the IEEE Computer and Communications Societies (Mar. 2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE