研究生: |
陳俞帆 Chen, Yu-Fan |
---|---|
論文名稱: |
末期腎臟疾病醫療資源最佳化分配 Optimal budget allocation of health care resources for end stage renal disease |
指導教授: |
溫于平
Wen, Ue-Pyng |
口試委員: |
張丁才
Chang, Ding-Tsair 張國浩 Chang, Kuo-Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 末期腎臟疾病 、連續時間馬可夫鏈 、預算分配模型 |
外文關鍵詞: | End stage renal disease, Continuous-time Markov chain model, budget allocation model |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多國家,末期腎臟疾病為相當普遍的慢性疾病,尤其在台灣,根據美國腎臟資料系統(USRDS)統計報告顯示,2008年台灣地區末期腎臟疾病的發病率相當高,普及率更居世界之冠,並且隨著末期腎臟疾病人口逐漸增加,所有與末期腎臟疾病相關的醫療花費都成為政府以及社會相當大的負擔。因此,為了有效遏止慢性腎臟疾病病患病情的惡化,政府提出了許多獎勵計畫,希望慢性腎臟病患以及末期腎臟疾病患者能夠得到更好的醫療品質,以達成減少末期腎臟疾病的發生率以及普及率之目的。
在本論文中,我們利用連續時間馬可夫鏈模型來描述腎臟病患的疾病演進,將病患的特徵以及屬性列入考慮,以求出病患各自的期望壽命,並進一步提出一個數學規劃模型,將有限的醫療資源最佳地分配在這些獎勵計畫上,使得腎臟病患能夠獲得最大化的期望壽命。此論文的結果能夠幫助決策者評估患者的特徵以及屬性對於他們生存表現的影響,另外,還可以提供建議給政府,使分配醫療資源時能夠更具理論依據,並進一步促進腎臟病患得到最大的獲益。
End-stage renal disease (ESRD) has been a widespread disease in many countries, especially in Taiwan. According to the statistics of United States Renal Data System (USRDS), Taiwan had high rates of incident ESRD and the greatest rates of prevalent ESRD in 2008. Moreover, with the increasing ESRD patients appear, the huge expense becomes a heavy burden in the society. To avoid deterioration, the government proposed many incentive programs to stimulate better medical quality and the ultimate goal is to reduce the incident and prevalent rates of ESRD.
In this study, we develop a continuous-time Markov chain model to estimate the patients’ life expectancy and their disease progression of ESRD individually under different scenarios. Besides, we propose a mathematical model which is constructed to allocate resources to incentive programs to maximize patients’ life expectancy under the limited funds. The results can help decision makers realize the impact of patients’ attributes on their life expectancies before and after these incentive programs and provide suggestions to the government for allocating resources to achieve optimal patients’ effectiveness.
REFERENCES
[1] 中央健保局. http://www.nhi.gov.tw/
[2] 台灣腎臟醫學會. http://www.tsn.org.tw/
[3] 行政院衛生署. http://www.doh.gov.tw/cht2006/index_populace.aspx
[4] 財團法人中華民國腎臟基金會.http://www.kidney.org.tw/
[5] Chang, W.N., “Cost-effectiveness analysis and optimal budget allocation of peritoneal dialysis and haemodialysis using in end stage renal disease treatment,” Master Thesis, Department of IEEM, National Tsing Hua University, Taiwan (2006).
[6] Epstein, D., Chalabi, Z., Claxton, K. and Sculpher, M., “Mathematical programming for the optimal allocation of health care resources,” Centre for Health Economics (2005).
[7] Johansen, K.L., Zhang, R., Huang, Y, Chen, S.C., Blagg, C.R., Goldfarb-Rumyantzev, A.S., Hoy, C.D., Lockridge Jr, R.S., Miller, B.W., Eggers, P.W. and Kutner, N.G., “Survival and hospitalization among patients using nocturnal and short daily compared to conventional HD: a USRDS study,” Kidney International, 76, 984-990 (2009).
[8] Kemeny, J. G. and Snell, L. J., Finite Markov Chains. Van Nostrand, Princeton, New Jersey: Springer (1960).
[9] Kleinbaum, D.G. and Klein, M., Survival Analysis. New York: Springer (2005).
[10] Lee, C.P., Zenios, S.A. and Chertow, G.M., “A simulation model to estimate the cost and effectiveness of alternative dialysis initiation strategies,” Medical Decision Making, 26, 535–549 (2006).
[11] Lee, C.P., Chertow, G.M. and Zenios, S.A., “Optimal Initiation and Management of Dialysis Therapy,” Operations Research, 56, 1428-1449 (2008).
[12] Lee C.P., Chertow G.M. and Zenios S.A., “Cost-Effectiveness of Frequent In-Center Hemodialysis,” Journal of the American Society of Nephrology, 19, 1792-1797 (2008).
[13]Levey A. S, Perrone R. D and Madias N. E, “Serum creatinine and renal function,” Annual Review of Medicine, 39, 465–490 (1988).
[14] Logofet, D.O. and Lensnaya E.V., “The mathematics of Markov models: what Markov chains can really predict in forest successions.” Ecological Modelling, 126, 285–98 (2000).
[15] Maiwenn, J.A., Feenstrab, T. and Brouwera, W.B.F., “Decision makers’ views onhealth care objectives and budget constraints: results from a pilot study,” Health Policy, 70, 33-78 (2004).
[16] National Kidney Foundation. http://www.kidney.org/
[17] Richter, A., “Duct tape for decision makers: the use of OR models in pharmacoeconomics,” Operations Research and Health Care, 70, 275-296 (2004).
[18] Stinnett, A.A. and Paltiel, A.D.,“Mathematical programming for the efficient allocation of health care resources,” Journal of Health Economics, 15, 641–653 (1996).
[19] Teerawattananon, Y., Mugford M. and Tangcharoensathien V., “Economic evaluation of palliative management versus peritoneal dialysis and HD for end-stage renal disease: evidence for coverage decisions in Thailand,” Value in Health, 10, 61-72 (2007).
[20] Tang, H.K., Wong, J. H. S., Poon, C.K.Y., Tang, C.M.K., Chu, K.H., Lee, W., Fung , S.K.S, Chau, K.F., Li, C.S. and Tong, K.L., “One Year Experience of Nocturnal Home Haemodialysis With An Alternate Night Schedule in Hong Kong,” Nephrology, 16, 57-62 (2010).
[21] United States Renal Data System. http://www.usrds.org/
[22] Wen, C.P., Cheng, T.Y.D., Tsai, M.K., Chang, Y.C., Chan, H.T., Tsai, S.P., Chiang,P.H., Hsu, C.C., Sung, P.K., Hsu, Y.H. and Wen, S.F., “All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462293 adults in Taiwan,” The Lancet, 371, 2173-2182 (2008).