研究生: |
陳正斌 Chen Cheng-Ping |
---|---|
論文名稱: |
BGA光收發模組之可靠度與耦合效率分析 Analysis of Reliability and Coupling Efficiency for BGA Type Transceiver |
指導教授: |
江國寧
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | BGA 、光收發模組 、耦合效率 、可靠度 |
外文關鍵詞: | BGA, Transceiver, Coupling Efficiency, Reliability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著光通訊產業的發展,新型的光通訊模組與系統也推陳出新。本研究將使用ANSYS電腦模擬軟體針對以BGA型態之光收發模組與光電基板結合後,其錫球可靠度與光耦合效率作一分析與探討。
為增加短距離內的通訊頻寬、降低串擾(Crosstalk)效應並減少熱效應問題的產生,光電基板因應而生。所謂光電基板即是將傳統印刷電路板中的金屬導線以平面波導結構替代,光取代電子在波導中傳遞訊號,此舉可解決上述傳統基板之問題。而在光收發模組封裝的成本中,光對位部分佔了很大之比例,故為將低封裝成本,以錫球回復力作為光對位機制的光收發模組已有多種之型態,一般皆以覆晶結構的形式存在。其與電子封裝產業不同之處在於覆晶結構之光收發模組並無底膠,故錫球可靠度較差。於本研究中,光收發元件將置於BGA封裝體內,期望將其可靠度提升。
在一般光電模組分析當中,只有以實驗量測光耦合效率,對錫球受熱循環後之壽命並無分析,但實際上錫球壽命會影響光電模組的可用性。故本研究以有限單元理論將光電模組模型化並加以分析,並以分析結果預測錫球疲勞壽命及探討潛變效應對光耦合效率之影響。
1. L. S. Goldmann, “Geometric Optimization of Controlled Collapse Interconnection”, IBM Journal of Research and Development, vol. 120, pp.175-178, May 1969.
2. L. F. Miller, “Controlled Collapse Reflow chip Join”, IBM Journal of Research and Development, vol.120, pp.239-250, May 1969.
3. H. Tsunetsugu, T. Hayashi, K. Katsura, M. Hosoya, N. Sato and N. Kukutsu“, Accurate, stable, high-speed interconnections using 20- to 30-um-diameter microsolder bumps,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 20 no. 1, pp.76-82, March 1997.
4. J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda and T. Kato, “Multi Chip Precise Self-Aligned Assembly for Hybrid Integrated Optical Modules Using Au-Sn Solder Bumps”, IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 24, no. 2, pp. 569-575, Nov. 2001.
5. C. M. Liao, “Research on Self-Alignment Control of Edge Emitting Laser Diode,” National Tsing Hua University Power Mechanical Engineering Master Thesis, 2002.
6. M. J. Wale and C. Edge, “Self-aligned, flip-chip assembly of photonic devices with electrical and optical connections”, IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 13, no. 4, pp. 780-786, 1990.
7. K. P. Jackson, E.B. Flint, M.F. Cina, D. Lacey, J. M. Trewhella, T. Caulfield and S. Sibley, “A compact multichannel transceiver module using planar-processed optical waveguides and flip-chip optoelectronic components”, in Proc, 42nd ECTC, pp. 93-97, 1992.
8. N. D. Morozova, L. A. Liew, W. Zhang, R. Irwin, B. Su and Y.C. Lee, “Controlled solder self-alignment sequence for an optoelectronic module without mechanical stops”, Electronic Components and Technology Conference, 1997. Proceedings., 47th , pp. 1188-1193, 1997.
9. Wei Lin, Patra, S.K. and Lee, Y.C., “Design of Solder Joints for Self-Aligned Optoelectronic Assemblies”, Components, Packaging, and Manufacturing Technology, vol. 18, no. 3, pp.543-551, Aug. 1995.
10. Tan Qing and Y. C. Lee, “Soldering technology for optoelectronic packaging”, Electronic Components and Technology Conference, 1996. Proceedings., 46th , pp. 26-36, 1996.
11. C. Pusarla and A. Christou, “Solder bonding alignment of microlens in hybrid receiver for free space optical interconnections”, Electronic Components and Technology Conference, 1996. Proceedings., 46th, pp.42-47, 1996.
12. K. R. Hase, ”Computer-internal optical bus systems with light guiding plate”, in Proc. IOOC-ECOC, pp. 597-600, 1985.
13. K. H. Brenner and F. Sauer, “Diffractive-reflective optical interconnects”, Appl. Opt., vol. 27, pp. 4251-4254, 1988.
14. R. K. Kostuk, M. Kato and Y. T. Huang, “Substrate mode holograms for optical interconnects”, in Topical Meet. on Optical Computing, pp. 168-171.1989.
15. D. Prongue and H. P. Herzig, “Design and fabrication of HOE for clock distribution in integrated circuits”, in Proc. Int. Conf. On Holographic System, Components and Applications, pp. 204-208, 1989.
16.S.Natarajan, Zhao Chnunhe and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects”, Lightwave Technology, vol. 13, no. 6, pp. 1031 –1040, June 1995
17. L. Vanwassenhove, R. Baets, M. Brunfaut, J. Van Campenhout, J. Hall, K. Ebeling, H. Melchior, A. Neyer, H. Thienpont, R. Vounckx, J. Van Koetsem, P. Heremans, F. T. Lentes and D. Litaize, “Two-dimensional optical interconnect between CMOS IC's”, Electronic Components & Technology Conference, pp. 231 –237, 2000.
18. M. Koyanagi, T. Matsumoto, T. Shimatani, K. Hirano, H. Kurino, R. Aibara, Y. Kuwana, N. Kuroishi, T. Kawata and N. Miyakawa,
“Multi-chip module with optical interconnection for parallel processor system”, Solid-State Circuits Conference, 1998. Digest of Technical Papers, pp. 92 -93, 1998.
19. M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, S. Imamura, ”Polymeric optical waveguide films for short-distance optical interconnects”, Selected Topics in Quantum Electronics, vol. 5, no. 5, pp. 1237 –1242, Sept.-Oct. 1999.
20. Tan Qingsheng and J. Vandewege, “2.5GB/S/MM Optical Fiber Interconnections”, Optical Communication, 1996. ECOC '96. 22nd European Conference on, vol. 2, pp. 55 –58, 1996.
21. G. De pestel, A. Ambrosy, Q. Tan, M. Vrana, F. Migom, H. Richter, J. Vandewege and P. Vetter “.Multichannel optical modules compatible with the fiber-in-board technology”, Components, Packaging, and Manufacturing Technology, vol. 19, no. 1 , pp. 116 –123, Feb. 1996.
22. G. De Pestel, A. Picard, J. Vandewege, D. Morlion, Q. Tan, J. Van Koetsem, F. Migom and P. Vetter, “Parallel optical interconnections for future broad band systems, based on the "fibre in board technology"”, Electronic Components and Technology Conference, Proceedings., 46th , pp. 264 –268, 1996.
23. D. Krabe and W. Scheel, “Optical interconnects by hot embossing for module and PCB technology-the EOCB approach”, Electronic Components and Technology Conference, pp. 1164 –1166, 1999.
24. S. Lehmacher and A. Neyer, “Integration of polymer optical waveguides into printed circuit boards”, Electronics Letters, vol. 36, no. 12, pp. 1052 –1053, June 2000.
25. K. Schmieder and K. J. Wolter, “Electro-optical printed circuit board (EOPCB)”, Electronic Components & Technology Conference, 2000 Proceedings. 50th, pp. 749 –753, 2000.
26. H. Schroder, J. Bauer, F. Ebling and W. Scheel, “Polymer optical Interconnects for PCB“, Polymers and Adhesives in Microelectronics and Photonics, First International IEEE Conference on 2001, pp. 337 –343, 2001.
27. E. Griese, “Parallel optical interconnects for high performance printed circuit boards”, Parallel Interconnects, 1999. (PI '99) Proceedings. The 6th International Conference on 1999, pp. 173 –183, 1999.
28. Y. Ishii, S. Koike, Y. Arai and Y. Ando, “SMT-compatible optical-I/O chip packaging for chip-level optical interconnects“, Electronic Components and Technology Conference, 2001 Proceedings., 51st , pp. 870 –875, 2001.
29. S. T. Ku, “Reliability Analysis of Optical Fiber Array Modulus for Transceiver,” National Tsing Hua University Power Mechanical Engineering Master Thesis, 2002.
30. P. Schnitzer, M. Grabherr, R. Jager, F. Mederer, R. Michalzik, D. Wiedenmann, K.J. Ebeling, “GaAs VCSEL's at /spl lambda/=780 and 835 nm for short-distance 2.5-Gb/s plastic optical fiber data links”, IEEE Photonics Technology Letters, vol. 11, no. 7, pp. 767 –769, July 1999.
31. Brakke, “Surface Evolver Manual, Version 2.01”, 1992.
32. E. Kendall, An introduction to numerical analysis”, 1989.
33. J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability: of the Importance of Model Validation”, InterPack Conference, 1999.
34. L. F. Coffin, Jr., and N.Y. Schenectady, “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal”, Tran. ASME, 76, pp. 931-950, 1954.
35. S. S. Manson, “Thermal Stress and Low Cyclic Fatigue”, McGraw-Hill Book Co., Inc., Ny., pp. 125-192, 1966.
36.H. D. Solomon, “Fatigue of 60/40 Solder”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-9, pp. 99-104, 1986.
37. G. Gustafsson, “Finite Element Modeling of BGA Packages for Life Pediction”, Electronic Components and Technology Conference, pp.1059-1063, 2000.
38. Bellcore, “Reliability assurance practices for optoelectronic devices in loop applications”, TA-NWT-000983, no.2, December 1993.
39. J. H. Lau, “Solder Joint Reliability : Theory and Applications”, Van Nostrand Reinhold, 1991.
40. W. B. Hampshire, “Electronic Material Handbook”, Materials Park, OH:ASM International., 1989.
41. P. J. Adams, “Thermal Fatigue of Solder Joints in Micro-Electronic Devices”, Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology, 1986.
42. S. Rzepka, M. A. Korhonen, “The Effect of Underfill Delamination on the Reliability of Flip Modules”, Application of Fracture Mechanics in Electronic Packaging, Vol. 20, pp.73-83, 1997.
43. J. Partridge, “Incorporating BGAs into High Volume Assembly Operations“, Electronic Packaging and Production, pp. 46-54, 1997.
44. B. Chandran, D. Goyal and J. Thomas, “Effect of Package Design and Layout on BGA Solder Joint Reliability of an Organic C4 Package”, Electronic Components and Technology Conference, pp.1205-1214, 2000.