簡易檢索 / 詳目顯示

研究生: 藍加亞
KUPPUSAMY, RAMAJAYAM
論文名稱: 銠金屬與鈷金屬催化碳-氫鍵活化於官能化及與重烯環化之應用
Rhodium and Cobalt-Catalyzed C–H Bond Functionalization and Annulation Reactions with Allenes
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 劉瑞雄
Liu, Rai-Shung
蔡易州
Tsai, Yi-Chou
莊士卿
Chuang, Shih-Ching
謝仁傑
Hsieh, Jen-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 272
中文關鍵詞: 碳-氫鍵活化2-羥基苯甲醛2-氨基苯甲醛2-乙烯基苯酚N-苯基乙醯胺重烯
外文關鍵詞: Rhodium, Cobalt, C-H bond activation, 2-Hydroxybenzaldehydes, 2-aminobenzaldehydes, 2-Vinylphenols, N-Phenylacetamides, Allenes
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    過渡金屬催化的合成方法是現代有機合成中最重要的工具。尤其利用易於獲得的π-組成分子進行碳-氫鍵官能化,更是在單一步驟合成天然產物與生物活性骨架中一種相當有吸引力的方法。它是一種不管原子使用效率或步驟效率都相當高的方法,被高度推崇為綠色過程。因此, 本論文描述了三個新的專注在過渡金屬催化的碳-氫鍵官能化反應與重烯的新反應。為了方便和更好的理解,論文分為三章。這三章分別描述了銠(III)和鈷(III)催化的碳-氫鍵官能化和與重烯的環化反應。
     第1章描述銠(III)金屬催化2-羥基或2-氨基苯甲醛與重烯進行[4+1]環化反應。 反應通過醛碳-氫鍵活化,重烯的插入和親核加成,然後進行β-氫脫去反應,以優異的產率提供官能基化的3-香豆冉酮和3-二氫吲哚酮。

     第2章討論酚輔助鈷(III)金屬催化2-乙烯基苯酚與重烯進行碳-氫鍵官能化,以提供[5+1]環化產物。 反應通過乙烯基之碳-氫鍵活化,重烯插入和不尋常的分子內位向選擇性苯氧基加成,然後進行β-氫脫去反應,以優異的產率提供2,2-二取代的2H-苯並吡喃。 另外,這是在鈷催化的碳-氫鍵活化反應中,重烯類物質首次用作偶聯物。

     第3章解釋了鈷(III)金屬催化N-苯基乙醯胺與重烯進行[3+3]環化反應。 反應通過芳香碳-氫鍵活化,重烯插入反應,然後進行β-氫脫去反應和1,4-加成反應,以優異的產率提供官能化的1,2-二氫喹啉。 而沒有環化的二烯中間體的分離則清楚地解釋了反應途徑。


    ABSTRACT

    Transition-metal catalyzed synthetic methods are the most important tools of modern organic synthesis. Particularly, direct C–H functionalization by utilizing readily available π-components is an attractive methodology to synthesize natural products and bioactive skeletons in a single step. It is an atom- and step-economical method which is highly urged as one of the green processes. In this regard, this thesis describes three new reactions that focus on the transition-metal catalyzed C–H bond functionalization reactions with allenes. For convenience and better understanding, the thesis is divided into three chapters. These three chapters describe Rh(III) and Co(III)-catalyzed C–H bond functionalization and annulation reactions with allenes.
     Chapter 1 describes a Rh(III)-catalyzed [4+1] annulations of 2-hydroxy- and 2-aminobenzaldehydes with allenes. The reaction proceeds via aldehyde C–H bond activation, allene insertion and nucleophilic addition followed by β-hydride elimination to afford functionalized 3-coumaranones and 3-indolinones in excellent yields.

     Chapter 2 deals about Co(III)-catalyzed phenolic OH-assisted C–H bond functionalization of 2-vinylphenols with allenes to afford [5+1] annulation product. The reaction proceeds via vinylic C–H bond activation, allene insertion and unusual intramolecular regioselective phenoxide addition followed by β-hydride elimination to afford 2,2-disubstituted 2H-chromenes in excellent yields. This is the first time that allenes have been used as the coupling partners in cobalt-catalyzed C–H activation reactions.

     Chapter 3 explains about a Co(III)-catalyzed [3+3] annulation of N-Phenylacetamides with Allenes. The reaction proceeds via aromatic C–H bond activation, allene insertion, followed by β-hydride elimination and 1,4-addition reaction affords a functionalized 1,2-dihydroquinolines in excellent yields. Isolation of acyclic diene intermediate clearly explains the reaction pathway.

    TABLE OF CONTENTS Page LIST OF SCHEMES X LIST OF TABLES XII ABBREVIATIONS XIII LIST OF PUBLICATIONS XV CHAPTER 1: Rh(III)-Catalyzed [4+1] Annulations of 2-Hydroxy and 2-Aminobenzaldehydes with Allenes: A Simple Method toward 3-Coumaranones and 3-Indolinones 1 1.1. Introduction 2 1.2. Results and Discussion 9 1.3. Applications 23 1.4. Proposed Mechanism 24 1.5. Conclusion 25 1.6. Experimental Section 26 1.7. Spectroscopic Data 32 1.8. References 53 CHAPTER 2: Cobalt(III)-Catalyzed [5+1] Annulation for 2H-Chromenes Synthesis via Vinylic C–H Activation and Intramolecular Nucleophilic Addition 59 2.1. Introduction 60 2.2. Results and Discussion 67 2.3. Mechanistic Discussion 78 2.4. Application 79 2.5. Proposed Mechanism 80 2.6. Conclusion 81 2.7. Experimental Section 82 2.8. Spectroscopic Data 91 2.9. References 105 CHAPTER 3: Cobalt(III)-Catalyzed [3+3] Annulation of N–Phenylacetamides with Allenes: An Easy and Efficient Method to 1,2-Dihydroquinolines 111 3.1. Introduction 112 3.2. Results and Discussion 119 3.3. Mechanistic Discussion 130 3.4. Proposed Mechanism 133 3.5. Conclusion 134 3.6. Experimental Section 135 3.7. Spectroscopic Data 144 3.8. References 158 CRYSTAL STRUCTURES, 1H AND 13C SPECTRA 163 LIST OF SCHEMES CHAPTER 1 Scheme 1.1. Generalized DG Assisted C–H Bond Functionalization Reactions 2 Scheme 1.2. General Mechanism of DG Assisted C–H Functionalization with Alkynes 3 Scheme 1.3. General scheme of Aldehyde C(sp2)-H Activation Reactions 3 Scheme 1.4. Rh-Catalyzed C–H Bond Functionalization Reactions 8 Scheme 1.5. Diversity Oriented Synthesis of Compounds 6-8 from 3aa 23 Scheme 1.6. Proposed Reaction mechanism 25 CHAPTER 2 Scheme 2.1. Co(III)-Catalyzed C–H Bond Activation Reactions 61 Scheme 2.2. Cobalt-Catalyzed and DG Assisted C–H Functionalization Reactions 67 Scheme 2.3. Competition Experiments 78 Scheme 2.4. Kinetic Isotope Experiments 79 Scheme 2.5. Synthesis of Chromane from 2H-Chromene 79 Scheme 2.6. Proposed Reaction Mechanism 81 CHAPTER 3 Scheme 3.1. Co(III)-Catalyzed Oxidative Annulation Reactions 112 Scheme.3.2. Co(III)-Catalyzed C–H Bond Activation Reactions with Allenes 118 Scheme 3.3. Reversible D/H Exchange Study 131 Scheme 3.4. Kinetic Isotope Experiment 131 Scheme 3.5. Isolation of a Key Acyclic Intermediate 132 Scheme 3.6. Mechanism Discussion by Using Acyclic Intermediate 133 Scheme 3.7. Proposed Reaction Mechanism. 134 LIST OF TABLES CHAPTER 1 Table 1.1: Optimization studies for rhodium-catalyzed [4+1] annulation of salicylaldehyde 1a with allene 2a 9 Table 1.2: Results of rhodium-catalyzed [4+1] annulation of salicylaldehyde 1a-p with allene 2a-l 12 Table 1.3: Optimization studies for rhodium-catalyzed [4+1] annulation of 2-tosylaminobenzaldehyde 4a with allene 2a 17 Table 1.4: Results of rhodium-catalyzed [4+1] annulation of 2-aminobenzaldehydes 4a-h with allenes 2a-f a,b 20 CHAPTER 2 Table 2.1: Optimization studies for cobalt-catalyzed [5+1] annulation of 2-vinylphenol 1a with allene 2a 67 Table 2.2: Results of cobalt-catalyzed [5+1] annulation of 2-vinylphenols 1a-r with allenes 2a-l 72 CHAPTER 3 Table 3.1: Optimization studies for cobalt-catalyzed [3+3] annulation of acetanilide 1a with allene 2a 119 Table 3.2: Results of cobalt-catalyzed [3+3] annulation of acetanilide 1a-s with allene 2a-f 125

    References-1
    1. (a) Bond, G. C. Metal-Catalysed Reactions of Hydrocarbons, Kluwer Academic/Plenum Publishers; New York, 2005. (b) Dyker, G. Handbook of C–H Transformations: Applications in Organic Synthesis, Wiley-VCH.; Weinheim, 2005. (c) Yu, J.-Q.; Ackermann, L.; Shi, Z. C–H Activation, Springer, Heidelberg; New York, 2010. (d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (e) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.
    2. (a) Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461. (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (c) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (d) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212. (e) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (f) Ackermann, L. Chem. Rev. 2011, 111, 1315. (g) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992. (h) Delord, J. W.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (i) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (j) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (k) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Delord, J. W. Chem. Soc. Rev. 2016, 45, 2900. (l) Delord, J. W.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (m) Davies, H. M. L.; Bois, J. D.; Yu, J. Q.; Chem. Soc. Rev. 2011, 40, 1855. (K) Liu, W.; Ackermann, L. ACS Catal., 2016, 6, 3743. (l) Kulkarni, A. A.; Daugulis, O. Synthesis, 2009, 4087. (m) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208; (n) Moselage, M.; Li, J.; Ackermann, L. ACS Catal., 2016, 6, 498. (q) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293. (r) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature. 2014, 509, 299. (s) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev., 2016, DOI: 10.1021/acs.chemrev.6b00661. (t) Xiao Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem. Int. Ed Ed. 2009, 48, 5094. (u) Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J. Q. Angew. Chem. Int. Ed. 2016, 55, 10578.
    3. (a) Colby, D. A.; Bergman, R. G. Ellman, J. A. Chem. Rev. 2010, 110, 624. (b) Patureau, F. W.; Delord, J. W.; Glorius, F. Aldrichimica Acta. 2012, 45, 31. (c) Guimond, N.; Gouliaras, C.; Fagnou, K.; J. Am. Chem. Soc. 2010, 132, 6908. (d) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9982. (e) Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. J. Org. Chem. 2011, 76, 6159. (f) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (g) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846. (h) Zhang, X.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A.; Li, X. Adv. Synth. Catal. 2011, 353, 719. (i) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736.
    4. (a) Kornhaa, C.; Li, J.; Ackermann, L. J. Org. Chem. 2012, 77, 9190. (b) Xu, L.; Zhu, Q.; Huang, G.; Cheng, B.; Xia, Y. J. Org. Chem. 2012, 77, 3017. (c) Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science. 2012, 338, 500. (d) Ye, B.; Cramer, N. Science. 2012, 338, 504. (e) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 66. (f) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364. (g) Shen, Y.; Liu, G.; Zhou, Z.; Lu, X. Org. Lett. 2013, 15, 3366. (h) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew. Chem. Int. Ed. 2013, 52, 6033. (i) Li, B.; Feng, H.; Xu, S.; Wang, B. Chem. Eur. J. 2011, 17, 12573.
    5. (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (b) Gigant, N.; Chausset-Boissarie, L.; Gillaizeau, I. Chem. Eur. J. 2014, 20, 7548. (c) He, R.; Huang, Z.-T.; Zheng, Q.-Y.; Wang, C. Tetrahedron Lett. 2014, 55, 5705. (d) Mesganaw, T.; Ellman, J. A. Org. Process Res. Dev. 2014, 18, 1097. (e) Mo, F.; Tabor, J. R.; Dong, G. Chem. Lett. 2014, 43, 264. (f) Muzart, J.; Le Bras, J. Synthesis 2014, 46, 1555. (g) Guo, T.; Huang, F.; Yu, L.; Yu, Z. Tetrahedron Lett. 2015, 56, 296. (h) Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem. Int. Ed. 2015, 54, 66. (i) Gandeepan, P.; Cheng, C.-H. Chem. Asian J. 2015, 10, 824.
    6. (a) Pernik, I.; Hooper, J. F.; Chaplin, A. B.; Weller, A. S.; Willis, M. C. ACS Catal. 2012, 2, 2779. (b) Hooper, J. F.; Young, R. D.; Weller, A. S.; Willis, M. C. Chem. Eur. J. 2013, 19, 3125. (c) Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 1125. (d) Murphy, S. K.; Dong, V. M. Chem. Commun. 2014, 50, 13645. (e) Zeng, H.; Li, C.-J. Angew. Chem. Int. Ed. 2014, 53, 13862. (f) Murphy, S. K.; Bruch, A. Dong, V. M. Chem. Sci. 2015, 6, 174.
    7. (a) Phipps, R. J.; Gaunt, M. J. Science, 2009, 323, 1593. (b) Dey, A.; Agasti, S.; Maiti, D. Org. Biomol. Chem., 2016, 14, 5440. (c) Leow, D.; Li, G.; Mei, T. S.; Yu, J. Q. Nature, 2012, 486, 518. (d) Dai, H. X.; Li, G.; Zhang, X. G.; Stepan, A. F.; Yu, J. Q. J. Am. Chem. Soc., 2013, 135, 7567. (e) Tang, R. Y.; Li, G.; Yu, J. Q. Nature, 2014, 507, 215. (f) Wang, X. C.; Gong, W .; Fang, L. Z.; Zhu, R. Y.; Li, S.; Engle, K. M.; Yu, J. Q. Nature, 2015, 519, 334. (g) Shi, H.; Wang, P.; Suzuki, S.; Farmer, M. E.; Yu, J. Q. J. Am. Chem. Soc., 2016, 138, 14876. (h) Ding, Q.; Ye, S.; Cheng, G.; Wang, P.; Farmer, M. E.; Yu, J. Q. J. Am. Chem. Soc., 2017, 139, 417. (i) Maity, S.; Hoque, E.; Dhawa, U.; Maiti, D. Chem. Commun., 2016, 52, 14003. (j) Modak, A.; Mondal, A.; Watile, R.; Mukherjee, S.; Maiti, D. Chem. Commun., 2016, 52, 13916. (k) Bera, M.; Sahoo, S. K.; Maiti, D. ACS Catal., 2016, 6, 3575. (l) Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Chem. Sci., 2016, 7, 3147.
    8. (a) Bag, S.; Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.; Dey, A.; Kancherla, R.; Maji, A.; Hazra, A.; Bera, M.; Maiti, D. J. Am. Chem. Soc. 2015, 137, 11888. (b) Lee, W. C.; Chen, C. H.; Liu, C. Y.; Yu, M. S.; Y. H.; Ong, T. G. Chem. Commun. 2015, 51, 17104. (c) Zhao, Y.; Yan, H.; Lu, H.; Huang, Z.; Lei, A. Chem. Commun. 2016, 52, 11366. (d) Ciana, C. L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.M.; Gaunt, M. J.; Angew. Chem. Int. Ed. 2011, 50, 458. (e) Dey, A.; Maity, S.; Maiti, D. Chem. Commun. 2016, 52, 12398. (f) Patra, T.; Bag, S.; Kancherla, R.; Mondal, A.; Dey, A.; Pimparkar, S.; Agasti, S.; Modak, A.; Maiti, D. Angew. Chem. Int. Ed. 2016, 55, 7751.
    9. (a) Zhang, F. L.; Hong, K.; Li, T. J.; Park, H.; Yu, J. Q. Science, 2015, 351, 252. (b) Jun, C. H.; Lee, H.; Hong, J. B.; J. Org. Chem. 1997, 62, 1200. (C) Mo, F.; Dong, G. Science, 2014, 345, 68. (d) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem. Int. Ed. 2003, 42, 112. (e) T. E. Lightburn, T. E.; Dombrowski, M. T.; Tan, K. L.; J. Am. Chem. Soc. 2008, 130, 9210. (f) Grünanger, C. U.; Breit, B.; Angew. Chem. Int. Ed. 2008, 47, 7346.
    10. (a) Satoh, T.; Itaya, T.; Miura, M.; Nomura, m. Chem. Lett. 1996, 823.
    11. (a) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4564.
    12. (a) Shimizu, M.; Tsurugi, H.; Satoh, T., Miura, M. Chem. Asian. J. 2008, 3, 881.
    13. (a) Von Delius, M.; Le, C. M.; Dong, V. M. J. Am. Chem. Soc. 2012, 134, 15022.
    14. (a) Shi, Z.; Schröder, N.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 8092.
    15. (a) Jijy, E.; Prakash, P.; Shimi, M.; Pihko, P. M.; Joseph, N.; Radhakrishnan, K. V. Chem. Commun. 2013, 49, 7349.
    16. (a) Castaing, M.; Wason, S. L.; Estepa, B.; Hooper, J. F.; Willis, M. C. Angew. Chem. Int. Ed. 2013, 52, 13280.
    17. (a) Zhang, T.; Qi, Z.; Zhang, X.; Wu, L.; Li, X. Chem. Eur. J. 2014, 20, 3283.
    18. (a) Yang, T.; Zhang, T.; Yang, S.; Chen, S.; Li, X. Org. Biomol. Chem. 2014, 12, 4290.
    19. (a) Kuninobu, y.; yu, p.; Takai, K. Org. Lett. 2010, 19, 4274.
    20. (a) Wang, H.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 7318.
    21. (a) Pernik, I.; Hooper, J. F.; Chaplin, A. B.; Weller, A. S.; Willis, M. C. ACS Catal. 2012, 2, 2779. (b) Shi, Z.; Schröder, N.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 8092. (c) Von Delius, M.; Le, C. M.; Dong, V. M. J. Am. Chem. Soc. 2012, 134, 15022. (d) Castaing, M.; Wason, S. L.; Estepa, B.; Hooper, J. F.; Willis, M. C. Angew. Chem. Int. Ed. 2013, 52, 13280. (e) Hooper, J. F.; Young, R. D.; Weller, A. S.; Willis, M. C. Chem. Eur. J. 2013, 19, 3125. (f) Jijy, E.; Prakash, P.; Shimi, M.; Pihko, P. M.; Joseph, N.; Radhakrishnan, K. V. Chem. Commun. 2013, 49, 7349. (g) Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 1125. (h) Murphy, S. K.; Dong, V. M. Chem. Commun. 2014, 50, 13645. (i) Yang, T.; Zhang, T.; Yang, S.; Chen, S.; Li, X. Org. Biomol. Chem. 2014, 12, 4290. (j) Zeng, H.; Li, C.-J. Angew. Chem. Int. Ed. 2014, 53, 13862. (k) Zhang, T.; Qi, Z.; Zhang, X.; Wu, L.; Li, X. Chem. Eur. J. 2014, 20, 3283. (l) Murphy, S. K.; Bruch, A. Dong, V. M. Chem. Sci. 2015, 6, 174.
    22. (a) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem. Eur. J. 2015, 21, 9198. (b) Casanova, N.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem. Int. Ed. 2015, 54, 2374. (c) Burns, D. J.; Lam, H. W. Angew. Chem. Int. Ed. 2014, 53, 9931.
    23. (a) Shea, K. J.; Kim, J. S. J. Am. Chem. Soc. 1992, 114, 3044. (b) Ni, S.; Zhu, C.; Chen, J.; Ma, S. Org. Synth. 2013, 90, 327. (c) Kuang, J.; Ma. S. J. Org. Chem. 2009, 74, 1763. (d) Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2006, 71, 8516.
    24. Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    References-2
    1. (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081. (c) Gulias, M.; Lopez, F.; Mascarenas, J. L. Pure Appl. Chem. 2011, 83, 495. (d) Lopez, F.; Mascarenas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. (e) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791. (f) Yu, Z.-X.; Wang, Y.; Wang, Y. Chem. Asian J. 2010, 5, 1072.
    2. (a) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Wencel-Delord, J.; Droege, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (e) Sun, C.-L.; Li, B.J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (f) Fagnou, K. Top. Curr. Chem. 2010, 292, 35. (g) Daugulis, O. Top. Curr. Chem. 2010, 292, 57. (h) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (i) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (j) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212.
    3. (a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. (b) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem. Int. Ed. 2009, 48, 4572. (c) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585. (d) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326. (e) Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K. Angew. Chem. Int. Ed. 2011, 50, 1338. (f) Chen, J.; Pang, Q.; Sun, Y.; Li, X. J. Org. Chem. 2011, 76, 3523.
    4. (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (b) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem. Int. Ed. 2011, 50, 6379. (c) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 66. (d) Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science, 2012, 338, 500.
    5. (a) Xu, X.; Liu, Y.; Park, C.-M. Angew. Chem. Int. Ed. 2012, 51, 9372. (b) Tan, X.; Liu, B.; Li, X.; Li, B.; Xu, S.; Song, H.; Wang, B. J. Am. Chem. Soc. 2012, 134, 16163. (c) Quinones, N.; Seoane, A.; Garcia-Fandino, R.; Mascarenas, J. L.; Gulias, M. Chem. Sci. 2013, 4, 2874. (d) Luo, C.-Z.; Gandeepan, P.; Cheng, C.-H. Chem. Commun. 2013, 49, 8528.
    6. (a) Huckins, J. R.; Bercot, E. A.; Thiel, O. R.; Hwang, T.-L.; Bio, M. M. J. Am. Chem. Soc. 2013, 135, 14492. (b) Dooley, J. D.; Reddy Chidipudi, S.; Lam, H. W. J. Am. Chem. Soc. 2013, 135, 10829. (c) Ye, B.; Cramer, N. Science, 2012, 338, 504.
    7. (a) Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2014, 53, 10209. (b) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song, M.-P. Angew.Chem. Int. Ed. 2015, 54,10012. (c) Kalsi, D.; Sundararaju, B. Org. Lett. 2015, 17, 6118. (d) Yamakawa, T.; Yoshikai, N. Org. Lett. 2013, 15, 196. (e) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684. (f) Suzuki, Y.; Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Tetrahedron. 2015, 71, 4552. (g) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822. (h) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551. (i) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew.Chem. Int.Ed. 2016, 55, 4308.
    8. (a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (b) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968. (c) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525. (d) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. Eur. J. 2015, 21, 15529. (e) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844. (f) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. (g) Lerchen, A.; Vasquez-Cespedes, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 3208. (h) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi. B.-F. Org. Lett. 2016, 18, 1776.
    9. (a) Ferguson, j.; Zeng, F.; Alper, H. Org. Lett. 2012, 14, 5602.
    10. (a) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954.
    11. (a) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 834.
    12. (a) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 7607.
    13. (a) Finkbeiner, P.; Kloeckner, K.; Nachtshiem, B. J. Angew. Chem. Int. Ed. 2015, 54, 4949.
    14. (a) Casanova, N.; Seoane, A.; Mascarenas, J. L.; Gulias, M. Angew. Chem. Int. Ed. 2015, 54, 2374.
    15. (a) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem. Eur. J. 2015, 21, 9198.
    16. (a) Kuppusamy, R.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846.
    17. (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207.
    18. (a) Yu, D.G.; Gensch, T.; Azambuja, F. Céspedes, S.V.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722.
    19. (a) Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2015, 54, 9944. (b) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551. (c) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400.
    20. (a) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844.
    21. (a) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774.
    22. (a) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118–1126. (b) Nedd, S.; Alexandrova, A. N. Phys. Chem. Chem. Phys., 2015, 17, 1347–1353.
    23. (a) Kujawa, S.; Best, D.; Burns, D. J.; Lam, H. W. Chem. Eur. J. 2014, 20, 8599. (b) Burns, D. J.; Lam, H. W. Angew. Chem. Int. Ed. 2014, 53, 9931. (c) Cajaraville, A.; Suarez, J.; Lopez, S.; Varela, J. A.; Saa, C. Chem. Commun. 2015, 51, 15157. (d) Zeng, R.; Ye, J.; Fu, C.; Ma, S. Adv. Synth. Catal. 2013, 355, 1963. (e) Wang, H.; Beiring, B.; Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem. Int. Ed. 2013, 52, 12430. (f) Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 2055.
    24. (a) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Org. Lett. 2014, 16, 4208. (b) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. J. Am. Chem. Soc. 2015, 137, 16116. (c) Gandeepan, P.; Cheng, C.-H. Acc. Chem. Res. 2015, 48, 1194. (d) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem. Eur. J. 2015, 21, 9198. (e) Kuppusamy, R.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846.
    25. (a) Shintani, R.; Ito, T.; Hayashi, T. Org. Lett. 2012, 14, 2410. (b) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 14866. (c) Casey, C. P.; Boller, T. M.; Samec, J. S. M.; Reinert-Nash, J. R. Organometallics 2009, 28, 123. (d) He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5829. (e) Aranyos, A.; Szabo, K. J.; Castano, A. M.; Backvall, J. Organometallics 1997, 16, 1058.
    26. (a) Liu, X.-G.; Zhang, S.-S.; Jiang, C.-Y.; Wu, J.-Q.; Li, Q.; Wang, H. Org. Lett. 2015, 17, 5404.
    27. (a) Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    28. (a) Liu, X. G.; Zhang, S. S.; Jiang, C. Y.; Wu, J. Q.; Li, Q.; Wang, H. Org. Lett. 2015, 17, 5404.
    29. (a) Ngai, M. Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705. (b) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763. (c) Ni, S.; Zhu, C.; Chen, J.; Ma, S. Org. Synth. 2013, 90, 327.
    Reference-3
    1. Selected reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b) Lewis, J. C.; Bergman, R. E.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.(c) Campos, K. R. Chem. Soc.Rev. 2007, 36, 1069. (d) Campeau, L. -C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta. 2007, 40, 35. (e) Song, G.; Wang, F.; Li, X. Chem.Soc.Rev. 2012, 41, 3651. (f) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc.Rev. 2011, 40, 5068. (g) Sun, C. -L.; Li, B. -J.; Shi, Z. -J. Chem. Commun. 2010, 46, 677. (h) Chen, X.; Engle, K. M.; Wang, D. -H.; Yu, J. -Q. Angew. Chem. Int. Ed. 2009, 48, 5094. (i) Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew.Chem. Int. Ed. 2012, 51, 12343. (j) Kuppusamy, R.; Gandeepan, P.; Cheng, C.-H. Org.Lett. 2015, 17, 3846.
    2. (a) Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2014, 53, 10209. (b) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song, M.-P. Angew.Chem. Int. Ed. 2015, 54,10012. (c) Kalsi, D.; Sundararaju, B. Org. Lett. 2015, 17, 6118. (d) Yamakawa, T.; Yoshikai, N. Org. Lett. 2013, 15, 196. (e) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684. (f) Suzuki, Y.; Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Tetrahedron. 2015, 71, 4552. (g) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822. (h) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551. (i) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew.Chem. Int.Ed. 2016, 55, 4308.
    3. (a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (b) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968. (c) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525. (d) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. Eur. J. 2015, 21, 15529. (e) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844. (f) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. (g) Lerchen, A.; Vasquez-Cespedes, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 3208. (h) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi. B.-F. Org. Lett. 2016, 18, 1776. (h) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909. (i) Nakanowatari, S.; Mei, R.; Feldt, M.; Ackermann, L. ACS Catal. 2017, 7, 2511.
    4. (a) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984. (b) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (c) Katritzky, A. R. Chem. Rev. 2004, 104, 2125.
    5. (a) Solomon, V. R.; Lee, H. Curr. Med. Chem. 2011, 18, 1488. (b) Kaur, K.; Jain, M.; Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010, 45, 3245. (c) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223. (d) Chiang, C.-L.; Shu, C.-F. Chem. Mater. 2002, 14, 682.
    6. (a) Lu, Q.; Cespedes, S. V.; Gensch, T.; Glorius, F. ACS Catal. 2016, 6, 2352. (b) Kong, L.; Yu, S.; Zhou, X.; Li, X. Org.Lett. 2016, 18, 588.
    7. (a) Kong, L.; Zhou, X.; Li, X. Org.Lett. 2016, 18, 6320.
    8. (a) Muralirajan, K.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2017, 359, 513. (b) Kond, L.; Yu, S.; Tang, G.; Wang, H.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 3802.
    9. (a) Barsu, N.; Sen, M.; Premkumar, J. R.; Sundararaju, B. Chem. Comm. 2016, 52, 1338.
    10. (a) Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J. 2016, 22, 5899.
    11. (a) Shi, P.; Wang, L.; Chen, K.; Wang, J.; Zhu, J. Org. Lett. 2017, 19, 2418.
    12. (a) Chen, X.; Hu, X.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2016, 18, 4742.
    13. (a) Yu, X.; Chen, K.; Yang, F.; Zha, S.; Zhu, J. Org. Lett. 2016, 18, 5412.
    14. (a) Liu, X. G.; Zhang, S. S.; Jiang, C. Y.; Wu, J. Q.; Li, Q.; Wang, H. Org. Lett. 2015, 17, 5404.
    15. (a) Wang, H.; Lorion, M. M.; Ackermann, L. ACS Catal. 2017, 7, 3430.
    16. (a) Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem. Int. 2016, 55, 10386.
    17. (a) Kim, J. H.; Grebies, S.; Glorius, F. Angew. Chem. Int. 2016, 55, 5577.
    18. (a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (b) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968. (c) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525. (d) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. Eur. J. 2015, 21, 15529. (e) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844. (f) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. (g) Lerchen, A.; Vasquez-Cespedes, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 3208. (h) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi. B.-F. Org. Lett. 2016, 18, 1776.
    19. (a) Casanova, N.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem. Int. Ed. 2015, 54, 2374. (b) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem. Eur. J. 2015, 21, 9198. (c) Kuppusamy, R.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846.
    20. (a) Csaky, A. G.; de la Herrana, G. Murcia, M, C. Chem. Soc. Rev.2010, 39, 4080. (b) Hayashi, T.; Synlett. 2001, 879. (c) Tamio Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (d) Chen, M. H.; Mannathan, S.; Lin, P. S.; Cheng, C.-H. Chem. Eur. J. 2012, 18, 14918. (e) Hong, Y. C.; Gandeepan, P.; Mannathan, S.; Lee, W. T.; Cheng, C.-H. Org. Lett. 2014, 16, 2806.
    21. (a) Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    22. (a) Stuart, D. R.; Laperle, M. B.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc., 2008, 130, 16474. (b) Ni, S.; Zhu, C.; Chen, J.; Ma, S. Org. Synth. 2013, 90, 327.

    QR CODE