簡易檢索 / 詳目顯示

研究生: 巫佳雯
Chia-Wen Wu
論文名稱: 多重群播網路基於線性網路編碼之編碼複雜度研究
The Encoding Complexity of Linear Network Coding for Multicast
指導教授: 石維寬
Wei-Kuan Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 37
中文關鍵詞: 線性網路編碼符號個數編碼點最小切割
外文關鍵詞: Linear network coding, alphabet size, coding points, min-cut
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網路編碼(Network Coding)在通訊網路的領域中,成為一種嶄新的資訊散佈方式,這種資訊傳播方式可以明顯地增強通訊網路的效率與可靠度。關於網路編碼(Network Coding)在運作時所產生的複雜度,它表示為使用網路編碼時的計算總量,以及每一筆資訊流被成功傳送時所需要的網路資源。
    在計算網路的編碼時的有限體元素個數,我們稱之為編碼(code)時所需求的符號個數(alphabet size)。而在有限體中做運算的成本和其元素個數成正比,這表示網路編碼的計算複雜度與符號個數(alphabet size)成正比。另外,在需要進行資訊流合併的編碼點(coding points)中,其所需的成本自然會高過於只有複製和轉送封包的節點,且可能會造成延遲的情形發生。
    在本論文當中,主要探討在線性網路編碼(Linear Network Coding)的運作情況時,對於所需求的符號個數(alphabet size)以及編碼點(coding points)個數的上限值,以及如何最小化這兩者的個數,使得網路編碼在實際上運作時可以得到最佳的效能。除此之外,也針對符號個數(alphabet size),分別與最小切割(min-cut)、工作量(throughput)和設計複雜度做一個權衡性的比較。


    目錄 中文摘要 I Abstract II 第一章 導論 1 1.1網路編碼(Network Coding)簡介 1 1.2 內容簡介 4 第二章 網路編碼架構 5 2.1網路多重群播模型 5 2.2 線圖(Line Graph)模型 6 2.3 子樹分解(Subtree Decomposition) 8 2.4 最小子樹圖(Minimal Subtree graph) 11 第三章 網路編碼運作之資源使用 17 3.1 編碼符號個數(Alphabet Size)之上限值 17 3.1.1 兩個來源端與 N 個接收端之網路 17 3.1.2 具 h 個來源端與 N 個接收端之網路 22 3.1.3 複雜度 23 3.2 編碼點(Coding Points)個數之上限值 24 3.2.1 兩個來源端與 N 個接收端之網路 24 3.2.2 具 h 個來源端與 N 個接收端之網路 24 3.2.3 複雜度 26 3.3 有限資源的編碼運作 27 3.3.1 Min-Cut 與 Alphabet-Size 之衡量 27 3.3.2 Throughput 與 Alphabet-Size 之衡量 29 3.3.3 設計複雜度與 Alphabet-Size 之衡量 30 第四章 結論 34 參考資料 36

    1. R. Ahlswede, N. Cai, S.-Y R. Li, and R. W. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, pp. 1204 – 1216, July 2000.
    2. R. K□tter and M. M□dard, “Beyond routing: An algebraic approach to network coding,” IEEE/ACM Transaction on Networking, vol. 11, pp.782 – 796, October
    2003.
    3. S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Transaction on Information Theory, vol. 51. no. 6, pp. 1973 – 1982, 2005.
    4. C. Fragouli and E. Soljanin, “Information flow decomposition for network coding,” IEEE Transactions on Information Theory, vol. 52, pp. 829 – 848,
    March 2006.
    5. A. R. Lehman and E. Lehman, “Complexity classification of network
    information flow problems,” SODA, 2004.
    6. M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of network coding,” Joint special issue of the IEEE Transactions on Information Theory and the IEEE/ACM Transaction on Networking, vol. 52, pp. 2386 - 2397, 2006.
    7. C. Chekuri, C. Fragouli, and E. Soljanin, “On average throughput benefits and alphabet size for network coding,” Joint Special Issue of the IEEE Transactions on Information Theory and the IEEE/ACM Transactions on Networking, vol. 52,
    pp. 2410 – 2424, June 2006.
    8. J. Cannons and K. Zeger, “Network coding capacity with a constrained number of coding nodes,” Allerton Conference on Communication, Control, and
    Computing Allerton Park, Illinois, September 2006.
    9. M. Kim, C. W. Ahn, M. M□dard, and M. Effros, “On minimizing network coding resources: An evolutionary approach,” Network Coding Workshop, 2006.
    10. L. Zosin and S. Khuller, “On directed Steiner trees,” in Proceedings of the 13th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA), pp. 59-63.
    2002.
    11. T. Ho, R. K□tter, M. M□dard, M. Effros, J. Shi, and D. Karger, “A random linear network coding approach to multicast,” IEEE Transactions on Information
    Theory, vol.52, pp. 4413 – 4430, October 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE