研究生: |
劉秉仁 |
---|---|
論文名稱: |
弱KKM定理及應用 |
指導教授: | 張東輝 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2005 |
畢業學年度: | 94 |
中文關鍵詞: | 弱KKM函數族 、弱KKM定理 、變分不等式 |
外文關鍵詞: | weakly-KKM(X,Y), weakly-KKM theorem, variational inequality |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們將KKM函數族推廣到弱KKM函數族,探討弱KKM函數族的其性質並且得到一些弱KKM定理。利用這些弱KKM定理,我們證明一些變分不等式的存在性定理。本文的結果推廣了 Chang and Yen [4]的部分研究結果。
In this paper, we extend the concept of KKM (X,Y) to weakly-KKM (X,Y). We study the properties of weakly-KKM (X,Y) and get some weakly-KKM theorems. As application, we use these weakly-KKM theorems to establish the existence theorems concerning variational inequalities, which generalize some results of [4].
[1]M. Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math. Anal. Appl. 294(2004), 237-245.1
[2]H. Ben-El-Michaiekh and P. Deguire, Approachability and fixed point for non-convex set-valued maps, j. Math. Anal. Appl. 170(1992), 477-500.
[3]T. H. Chang, C. L. Yen, Generalized KKM theorem and its applications, Banyan Math. J. 3(1996)21-28.
[4] T. H. Chang, C. L. Yen, KKM property and fixed pointed theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[5]K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537.
[6]K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
[7]A. Granas and F. C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures Appl. 65(1989), 119-148.
[8]B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes for n-dimensionale Simplexe, Fund, Math. 14(1929), 132-137.
[9]M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152(1990), 46-60.
[10]S. Naoki, Afurther generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[11]S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math, Anal. Appl. 141(1989), 164-176.
[12]S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31(1994), 493-519.
[13]S. Park, S. P. Singh and B. Watson, Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121(1994), 1151-1158.