簡易檢索 / 詳目顯示

研究生: 劉秉仁
論文名稱: 弱KKM定理及應用
指導教授: 張東輝
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2005
畢業學年度: 94
中文關鍵詞: 弱KKM函數族弱KKM定理變分不等式
外文關鍵詞: weakly-KKM(X,Y), weakly-KKM theorem, variational inequality
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們將KKM函數族推廣到弱KKM函數族,探討弱KKM函數族的其性質並且得到一些弱KKM定理。利用這些弱KKM定理,我們證明一些變分不等式的存在性定理。本文的結果推廣了 Chang and Yen [4]的部分研究結果。


    In this paper, we extend the concept of KKM (X,Y) to weakly-KKM (X,Y). We study the properties of weakly-KKM (X,Y) and get some weakly-KKM theorems. As application, we use these weakly-KKM theorems to establish the existence theorems concerning variational inequalities, which generalize some results of [4].

    1. INTRODUCTION-------------------------------------------5 2. PRELIMINARIES------------------------------------------6 3. MAIN RESULTS-------------------------------------------9 4. REFERENCES--------------------------------------------17

    [1]M. Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math. Anal. Appl. 294(2004), 237-245.1
    [2]H. Ben-El-Michaiekh and P. Deguire, Approachability and fixed point for non-convex set-valued maps, j. Math. Anal. Appl. 170(1992), 477-500.
    [3]T. H. Chang, C. L. Yen, Generalized KKM theorem and its applications, Banyan Math. J. 3(1996)21-28.
    [4] T. H. Chang, C. L. Yen, KKM property and fixed pointed theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [5]K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537.
    [6]K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
    [7]A. Granas and F. C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures Appl. 65(1989), 119-148.
    [8]B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes for n-dimensionale Simplexe, Fund, Math. 14(1929), 132-137.
    [9]M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152(1990), 46-60.
    [10]S. Naoki, Afurther generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
    [11]S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math, Anal. Appl. 141(1989), 164-176.
    [12]S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31(1994), 493-519.
    [13]S. Park, S. P. Singh and B. Watson, Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121(1994), 1151-1158.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE