簡易檢索 / 詳目顯示

研究生: 周沁怡
論文名稱: 熱氣泡式噴墨列印系統之界面穩定性
Interfacial Stabilities in the Thermal Inkjet Printing System
指導教授: 張一熙
陳信文
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 147
中文關鍵詞: 熱氣泡式噴墨列印無鉛銲料相平衡界面反應液相線投影圖
外文關鍵詞: Thermal inkjet printing, Lead-free solder, Phase equilibria, Interfacial reactions, Liquidus projection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱氣泡式噴墨列印技術因其具有價格低廉、易彩色化、中高階的輸出品質、可使用一般紙,與低噪音等特性,成為現今市場上最受消費者歡迎的列印輸出產品。熱氣泡式噴墨列印技術是一個相當複雜的過程,由數個次系統所組成的列印系統來完成高品質的列印輸出效果。熱氣泡式噴墨列印頭中的晶片和印表機中的電子控制列印模組,是為噴墨列印系統的兩顆心臟,而其所相關的材料問題,特別是界面穩定性,對於其性能與可靠性的表現是極為基本且重要的因素。
    在熱氣泡噴墨列印頭的晶片中,鉭(Ta)經常用來做為金接著層(Au)和導線材料,如純鋁(Al)、純銅(Cu)和鋁銅合金(Al-Cu)間的擴散阻障層。本論文以製備反應偶的方式,研究純鋁(Al)、純銅(Cu)、鋁銅合金(Al-Cu)和鉭(Ta)間的界面在600oC、750oC、900oC、1000oC 和1200oC時,不同反應時間下的界面穩定性,結果顯示這些界面非常穩定,也就是說,在此材料系統中,鉭(Ta)是很好的阻障材料。本論文亦進行鋁-鉭(Al-Ta)二元相平衡研究,並依據實驗結果提出修正後的鋁-鉭(Al-Ta)二元相平衡圖。
    另一方面,高品質、低成本的印表機電子控制列印模組的設計與製作則與電子構裝技術的發展息息相關,尋找合適的無鉛銲料來取代傳統鉛-錫合金(Pb-Sn)銲料,是現今電子產業中最重要的工作項目之ㄧ。雖然共晶錫-銅合金(Sn-Cu)和近共晶錫-銀-銅合金(Sn-Ag-Cu, SAC)是目前認為最好的無鉛銲料,但其最大缺點在於它們的熔點都比傳統共晶鉛-錫銲料(Pb-Sn)要高出許多,因此降低了接點的品質與可靠度。而共晶錫-鋅銲料(Sn-9wt%Zn)則因其熔點(198.5oC)較接近共晶鉛-錫銲料(Pb-Sn)的優勢,成為無鉛銲料的選擇之ㄧ。
    銅(Cu)和鎳(Ni)都是電子產品中相當常用的基板材料。若是選用共晶錫-鋅銲料(Sn-Zn)作為無鉛銲料,則會遇到錫-鋅/銅(Sn-Zn/Cu)和錫-鋅/鎳(Sn-Zn/Ni)接點可靠度的問題。因此,錫-鋅-銅(Sn-Zn-Cu)和錫-鋅-鎳(Sn-Zn-Ni)三元系統的基礎研究,對於共晶錫-鋅銲料(Sn-Zn)在電子工業上的應用非常重要。在本論文中,依照實驗結果與各二元相圖資料,建立了錫-鋅-銅(Sn-Zn-Cu)三元系統在250oC、230oC、210oC的等溫橫截面圖、液相線投影圖及錫-鋅-鎳(Sn-Zn-Ni)三元系統在250oC的等溫橫截面圖,並預測了錫-鋅-銅(Sn-Zn-Cu)三元系統在180oC的等溫橫截面圖。另一方面,為了改善共晶錫-鋅銲料(Sn-Zn)的潤濕性與抗氧化性,可在銲料中加入銅(Cu)、鉍(Bi)、鋁(Al)、銀(Ag)等元素。本論文亦探討銅(Cu)元素加入共晶錫-鋅銲料(Sn-Zn)中對界面反應的影響,分別為錫-鋅-銅合金(Sn-9wt%Zn-xCu)和銅(Cu)在250oC、和鎳(Ni)在280 oC的界面反應。


    ABSTRACT I TABLE OF CONTENTS TABLE CAPTIONS FIGURE CAPTIONS CHAPTER1 INTRODUCTION CHAPTER 2 LITERATURE REVIEW 2-1 Phase Equilibria 2-2 Interfacial Reaction 2-3 Liquidus Projection 2-4 Al-Cu-Ta System 2-4-1 Al/Ta Phase Diagram 2-4-2 Al/Ta Interfacial Reactions 2-4-3 Al-Cu/Ta Interfacial Reactions 2-4-4 Cu/Ta Interfacial Reactions 2-5 Sn-Zn-Cu System 2-5-1 Sn-Zn Phase Diagram 2-5-2 Cu-Sn Phase Diagram 2-5-3 Cu-Zn Phase Diagram 2-5-4 Sn-Zn-Cu Phase Equilibria 2-5-5 Sn-Zn/Cu Interfacial Reactions 2-5-6 Sn-Zn-Cu/Cu Interfacial Reactions 2-5-7 Sn-Zn-Cu Liquidus Projection 2-6 Sn-Zn-Ni System 2-6-1 Ni-Sn Phase Diagram 2-6-2 Ni-Zn Phase Diagram 2-6-3 Sn-Zn-Ni Phase Equilibria 2-6-4 Sn-Zn/Ni Interfacial Reactions 2-6-5 Sn-Zn-Cu/Ni Interfacial Reactions CHAPTER 3 EXPERIMENTAL PROCEDURES 3-1 Al-Cu-Ta System 3-1-1 Al-Ta Phase Equilibria 3-1-2 Al-Cu-Ta Interfacial Reactions 3-2 Sn-Zn-Cu System 3-2-1 Sn-Zn-Cu Phase Equilibria 3-2-2 Sn-Zn-Cu Interfacial Reactions 3-2-3 Sn-Zn-Cu Liquidus Projections 3-3 Sn-Zn-Ni System 3-3-1 Sn-Zn-Ni Phase Equilibria 3-3-2 (Sn-Zn-xCu)-Ni Interfacial Reactions CHAPTER 4 RESULTS AND DISCUSSION 4-1 Al-Cu-Ta System 4-1-1 Al/Ta Phase Equilibria 4-1-2 Al/Ta Interfacial Reactions 4-1-3 Al-Cu/Ta Interfacial Reactions 4-1-4 Cu/Ta Interfacial Reactions 4-2 Sn-Zn-Cu System 4-2-1 Sn-Zn-Cu Phase Equilibria 4-2-2 Sn-Zn-Cu Interfacial Reactions 4-2-3 Sn-Zn-Cu Liquidus Projection 4-3 Sn-Zn-Ni System 4-3-1 Sn-Zn-Ni Phase Equilibria 4-3-2 (Sn-Zn-xCu)-Ni Interfacial Reactions CHAPTER 5 CONCLUSIONS CHAPTER 6 REFERENCES PUBLICATION LIST

    1. H. P. Le, Recent Progress in Ink Jet Technologies II, 1999, pp. 1-3.
    2. S. F. Pond, Inkjet Technology and Product Development Strategies, Torrey Pines Research, USA, 2000.
    3. J. L. Stoffel, US Patent, 1989, 4,862,197.
    4. U. E. Hess, US Patent, 1988, 4,719,477.
    5. C. L. Wright, J. G. Bears, C. S. Chan, R. R. Hay, and F. Ura, US Patent, 1985, 4,535,343.
    6. D. J. Shelley, J. T. Majewski, M. R. Trackray and J. L. McWilliams, Hewlett-Packard Journal, June, 1997, pp. 1-7.
    7. D. Frear, Freescale Semiconductor, Lecture on the Lead-free Technology Workshop in TMS Annual Meeting, San Francisco, USA, 2005.
    8. Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003 on the restriction of the use of certain hazardous substrates in electronic equipment, Official Journal of the European Union, 2003, L37, pp. 19-23.
    9. Lead-free assembly projects, NEMI (National Electronics Manufacturing Initiatives), Herndon, Virginia, USA, http://www.nemi.org/projects/ese/lf_assembly.html, 1999.
    10. K. Suganuma, Current Opinion in Solid State and Materials Science, 2001, Vol. 5, pp. 55-64.
    11.“Roadmap 2002 for Commercialization of Lead-free Solder”, Lead-Free Soldering Roadmap Committee, Technical Standardization Committee on Electronics Assembly Technology, JEITA (Japan Electronics and Information Technology industries Association), Tokyo, Japan, 2002.
    12. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi and K. Sato, J. Mater. Res., 2004, Vol. 19(10), pp. 2887-2896.
    13. K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura, J. Mater. Res., 1998, Vol. 13(10), pp. 2859-2865.
    14. D. Q. Yu, H. P. Xie and L. Wang, J. Alloy and Comp., 2004, Vol. 385, pp. 119-125.
    15. Y. S. Kim, K. S. Kim, C. W. Hwang, K. Suganuma, J. Alloys and Comp., 2003, Vol. 352, pp. 237-245.
    16. J. M. Song and K. L. Lin, J. Mater. Res., 2003, Vol. 18(9), pp. 2060-2067.
    17. K. L. Lin and H. M. Hsu, J. Electron. Mater., 2001, Vol. 30(9), pp. 1068-1072.
    18. C. H. Wang, S. W. Chen, C. H. Chang and J. C. Wu, Metall. Mater. Trans. A, 2003, Vol. 34A, pp. 199-209.
    19. H. F. Hsu and S. W. Chen, Acta Mater., 2004, Vol. 52(9), pp. 2541-2547
    20. O. F. Hudson and R. M. Jones, J. Institute of Metals, 1915, Vol. 14(2), pp. 98-108.
    21. M. Hansen, Z. Metallkd., 1926, Vol. 18(11), pp. 347-349.
    22. O. Bauer and M. Hansen, Z. Metallkd., 1930, Vol. 22, pp. 405-411.
    23. B. J. Lee, N. M. Hwang and H. M. Lee, Acta Mater., 1997, Vol. 45(5), pp. 1867-1874.
    24. S. L. Hoyt, J. Institute of Metals, 1913, Vol. 10(2), pp. 235-265.
    25. Y. A. Chang, J. P. Neumann and A. Mikula, Phase Diagrams and Thermodynamic Properties of Ternary Copper-metal Systems, International Copper Research Association Inc., USA, 1979, pp. 678-683.
    26. G. Tammann and M. Hansen, Z. Anorg. Chem., 1924, Vol. 138, pp. 137-161.
    27. K. Yamaguchi and I. Nakamura, Rikwagaku-Kenkyu-jo Iho (Bull Inst. Phys. Chem. Research, Tokyo), 1932, Vol. 11, pp. 1330.
    28. F. N. Rhines, Phase Diagrams in Metallurgy, Their Development and Application, McGraw-Hill, USA, 1956.
    29. D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys, Chapman & Hall, London, 1992, pp. 48-53.
    30. V. I. Dybkov, J. Mater. Sci., 1986, Vol. 21, pp. 3078-3084.
    31. C. L. Tsao and S. W. Chen, J. Mater. Sci., 1995, Vol. 30, pp. 5215-5222.
    32. J. Hickl and R. W. Heckel, Metall. Trans. A, 1974, Vol. 6A, pp. 431-440.
    33. G. V. Kidson, J. Nuclear Mater., 1961, Vol. 3(1), pp. 21-29.
    34. F. J. J. Van Loo, Prog. Solid St. Chem., 1990, Vol. 20, pp. 47-99.
    35. J. B. Clark, Trans. of the Meatll. Soc. of AIME, 1963, Vol. 227, pp. 1250-1251.
    36. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, 1963, Vol. 2, pp. 89-117.
    37. E. G. Colgan, Mater. Sci. Reports, 1990, Vol. 5, pp. 1-44.
    38. L. H. Su, Y. W. Yen, C. C. Lin and S. W. Chen, Metall. Mater. Trans. B, 1997, Vol. 28B, pp. 927-934.
    39. S. P. Garf, M. Venkatraman and N. Krishnamurthy, Phase Diagrams of Binary Tantalum Alloys, Indian Institute of Metals, Calcutta, 1996, pp. 8-12.
    40. V. M. Glazov, G P. Lazarev and G. Korolkov, Metalloved. Term. Obrarotka Metal., 1959, Vol. 10, pp. 48-50.
    41. K. P. Gupta, Trans. AIME, 1961, Vol. 221, pp. 1047-1049.
    42. H. Kimura, O. Nakano and T. Ohkoshi, Trans. Natl. Res. Inst. Met. (Jpn.), 1973, Vol. 16, pp. 1-6.
    43. J. C. Schuster, Z. Metallkd., 1985, Vol. 76, pp. 724-727.
    44. P. R. Subramanian, D. B. Miracle and S. Mazdiyasni, Metall. Trans., 1990, Vol. 21A, pp. 539-545.
    45. E. G. Colgan and J. W. Mayer, J. Mater. Res., 1989, Vol. 4, pp. 815-820.
    46. J. K. Howard, J. F. White and P. S. Ho, J. Appl. Phys., 1973, Vol. 49, pp. 4083-4093.
    47. J. K. Howard, R. F. Lever, P. J. Smith and P. S. Ho, J. Vac. Sci. Technol., 1976, Vol. 13, pp. 68-71.
    48. J. W. Liaw, Y. C. Liu, J. S. Maa, W. S. Hsu, W. J. Shen, and S. K. Hsiung, Chinese Material Science, 1980, Vol. 12, pp. 36.
    49. B. W. Shen, J. M. Anthony, P. H. Chang, J. Keenan, R. Matyi and H. L. Tsai, Mater. Res. Soc. Symp. Proc., 1986, Vol. 54, pp. 103.
    50. A. I. Vorobeva and V. M. Parkun, Sov. Microelectron., 1991, Vol. 20, pp. 83-89.
    51. H. Sieber and J. H. Perepezko, EPD Congress, 1998, pp. 933-943.
    52. C. H. Wang, S. W. Chen, C. H. Chang and J. C. Wu, Metall. Mater. Trans. A, 2003, Vol. 34A, pp. 199-209.
    53. K. L. Pey, Y. Chen, W. K. Chim and W. Qin, European Symposium on Reliability of Electron Devices, Failure Physics and Analysis 5th, Glasgow, Oct. 4-7, 1994, pp. 71-76.
    54. P. R. Subramanian and D. E. Laughlin, Binary Alloy Phase Diagrams, Metals Park, American Society for Metals, USA, 1990, pp. 1485-1486.
    55. H. J. Lee, K. W. Kwon, C. Ryu and R. Sinclair, Acta Mater., 1999, Vol. 47, no. 15, pp. 3965-3975.
    56. K. L. Lin and Y. T Liu, IEEE Trans. and Advanced Packaging, 1999, Vol. 22(4), pp. 580-585.
    57. H. R. Gong and B. X. Liu, Appl. Phys. Lett., 2003, Vol. 83(22), pp. 4515-4517.
    58. Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, Binary Alloy Phase Diagrams, Metals Park, American Society for Metals, USA, 1990, pp. 3416-3417.
    59. N. Saunders and A. P. Miodownik, Binary Alloy Phase Diagrams, Metals Park, American Society for Metals, USA, 1990, pp1481-1483.
    60. A. P. Miodownik, Binary Alloy Phase Diagrams, Metals Park, American Society for Metals, USA, 1990, pp. 1508-1510.
    61. C. H. Wang, S. W. Chen, C. H. Chang and J. C. Wu, Metall. Mater. Trans. A, 2003, Vol. 34A, pp. 199-209.
    62. H. F. Hsu and S. W. Chen, Acta Mater., 2004, Vol. 52(9), pp. 2541-2547.
    63. H. M. Lee, S. W. Yoon and B. J. Lee, J. Electron. Mater., 1998, Vol. 27(11), pp. 1161-1166.
    64. K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, J. Mater. Res., 2000, Vol. 15(4), pp. 884-891.
    65. K. S. Kim, Y. S. Kim, K. Suganuma, and H. Nakajima, J. Jpn. Inst. Electronic Package, 2002, Vol. 5(7), pp. 666-671.
    66. K. S. Kim, Y. S. Kim, C. W. Hwang, S. H. Huh, K. Suganuma, and H. Nakajima, Proceedings of 11th Micro Electronic Symposium, Japan Institute of Electronics Packaging, 2001, pp. 255-258.
    67. I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi, Mater. Trans., 2002, Vol. 43(8), pp. 1797-1801.
    68. S. P. Yu, H. J. Lin and M. H. Hon, J. Mater. Sci.: Mater. in Electron., 2000, Vol. 11, pp. 461-471.
    69. M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K. N. Tu, Scripta Materialia, 2004, Vol. 51, pp. 641-645.
    70. Y. C. Chan, M. Y. Chiu and T. H. Chuang, Z. Metallkd., 2002, Vol. 93(2), pp. 95-98.
    71. C. W. Huang and K. L. Lin, J. Mater. Res., 2004, Vol. 19(12), pp. 3560-3568.
    72. C. W. Huang and K. L. Lin, Mater. Trans., 2004, Vol. 45(2), pp. 588-594.
    73. P. Nash and A. Nash, Binary Alloy Phase Diagrams, Metals Park, American Society for Metals, USA, 1990, pp. 2863-2864.
    74. P. Nash and Y. Y. Pan, Binary Alloy Phase Diagrams, Metals Park, American Society for Metals, USA, 1990, pp. 2887-2889.
    75. M. Y. Chiu, S. S. Wang and T. H. Chuang, J. Electron. Mater., 2002, Vol. 31(5), pp. 494-499.
    76. P. Harries, Soldering Surface Mount Technology, 1999, Vol. 11, pp. 46-52.
    77. H. R. Gong and B. X. Liu, Appl. Phys. Lett., 2003, Vol. 83(22), pp. 4515-4517.
    78. H. J. Lee, K. W. Kwon, C. Ryn and R. Sinclair, Acta Mater., 1999, Vol. 47(15), pp. 3965-3975.
    79. L. A. Clevenger, A. Mutscheller, J. M. E. Harper, Jr. C. Carbal, and K. Barmak, J. Appl. Phys., 1992, Vol. 72, pp. 4918-4924.
    80. K. Holloway, P. M. Fryer, Jr. C. Carbal, J. M. E. Harper, P. J. Bailey, K. H. Kelleher, J. Appl. Phys., 1992, Vol. 71, pp. 5433-5444.
    81. Q. Xu, H. Zhang, B. Ding, and Z. Hu, J. Mater. Sci. Technol., 2002, Vol. 18(6), pp. 512-515.
    82. H. R. Pak, J. S. Pak, J. M. Rigsbee and C. M. Wayman, Mater. Sci. and Eng., 1990, Vol. A128, pp. 129-139.
    83. F. M. d’Heurle, Mater. Sci. Forum, 1994, Vol. 1, pp. 1-13.
    84. F. M. d’Heurle, J. Mater. Res., 1986, Vol. 1, pp. 205-221.
    85. C. Y. Chou and S. W. Chen, Acta Mater., 2006, Vol. 54(9), pp. 2393-2400.
    86. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Washington D. C., USA, 1973, pp. 816.
    87. R. A. Gagliano and M. E. Fine, J. Electron. Mater., 2003, Vol. 32(12), pp. 1441-1447.
    88. S. W. Chen, S. H. Wu, and S. W. Lee, J. Electron. Mater., 2003, Vol. 32(11), pp. 1188-1194.
    89. J. Gorlich, G. Schmitz, and K. N. Tu, Appl. Phys. Lett., 2005, Vol. 86, pp. 053106-053108.
    90. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R, 2000, Vol. 27, pp. 95-145.
    91. S. W. Chen and C. A. Chang, J. Electron. Mater., 2004, Vol. 33(10), pp. 1071-1079.
    92. C. H. Lin, S. W. Chen, and C. H. Wang, J. Electron. Mater., 2002, Vol. 31(9), pp. 907-915.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE