簡易檢索 / 詳目顯示

研究生: 何欣儀
Ho, Hsin-I
論文名稱: Biodistribution and Imaging of Myeloperoxidase in Atherosclerotic apoE Knockout Mice by 111In-bis-5HT-DTPA
111In-bis-5HT-DTPA 於 apoE 基因剔除小鼠之粥狀動脈硬化模式之生物分佈與影像偵測骨髓過氧化酶之研究
指導教授: 羅建苗
Lo, Jem-Mau
口試委員: 高志浩

吳明哲
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 61
中文關鍵詞: 骨髓過氧化酶apoE基因剔除鼠銦-111
外文關鍵詞: Myeloperoxidase, apoE KO mice, In-111
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈硬化(atherosclerosis)是導致心血管疾病的主因。在動脈硬化形成的過程中,已充分證實骨髓過氧化酶(Mycloperoxidase, MPO)扮演最為關鍵的角色。骨髓過氧化酶會使得脂質氧化並累積在血管內層,形成粥樣化脆弱型斑塊。此不穩定斑塊受到骨髓過氧化酶催化而形成的過氧化物質所破壞,會破裂而形成血栓,導致危及性命的中風和心肌梗塞。如能發展非侵入性體內造影以偵測MPO的活性,將為醫學上早期診斷動脈硬化一有利的方法。本研究擬以111In-bis-5HT-DTPA小分子試劑偵測apoE基因剔除小鼠體內MPO之活性。
    方法: 111In-bis-5HT-DTPA小分子試劑中之5HT受MPO催化產生之過氧化物作用,會自行聚合或與蛋白質結合,增加小分子體積,減緩清除,延長累積在病灶部位。使用In-111放射核種標誌在bis-5HT-DTPA上,先在MPO酵素實驗中確認其聚合能力。動物模式選擇apoE基因剔除小鼠,進行粥狀動脈硬化之生成,並用血脂分析和組織病理學確認斑塊及MPO之產生。進一步利用nanoSPECT/CT 造影以及生物分佈試驗,評估111In-bis-5HT-DTPA為粥狀動脈硬化老鼠模式造影劑的可行性。
    結果:本實驗經質譜及核磁共振譜確認bis-5HT-DTPA之合成。111In-bis-5HT-DTPA能於大鼠血清中達到90%以上之穩定度。MALDI-TOF確認此試劑能自體聚合。於nanoSPECT/CT 造影實驗,可發現在apoE基因剔除小鼠的心臟周圍累積明顯高於基因正常鼠。而在生物分佈實驗中,111In-bis-5HT-DTPA在apoE基因剔除小鼠的主動脈累積量是基因正常鼠的1.38±0.03倍(注射後一小時)。且在注射後半小時到一小時間,111In-bis-5HT-DTPA在apoE基因剔除小鼠的主動脈的清除速率在統計上顯現小於基因正常鼠,分別為0.14±0.09 % ID/g/h 和3.88±0.25 % ID/g/h。
    結論:從造影及生物分佈結果發現111In-bis-5HT-DTPA在apoE基因剔除小鼠的主動脈累積明顯大於基因正常鼠,且在粥狀動脈硬化的主動脈血管壁中有較長時間的累積。本研究初步呈現111In-bis-5HT-DTPA小分子放射試劑在粥狀動脈硬化模式中,因MPO酵素作用,自體聚合或和蛋白質結合而影響藥物動力學、生物分佈、影像診斷的結果。


    Myeloperoxidase(MPO) plays an important role in formation of atherosclerotic plaques. MPO can activate lipid oxidization and localization in the intima of blood vessel wall, resulting in lipid cores in atherosclerotic plaque. If the lipid core dominates the plaque, the latter would become unstable and easily ruptured, forming thrombi that circulate in the blood. It would be very dangerous to make thrombi obstruct the blood vessels, causing fatal disease such as stroke and myocardial infarction. Hence, early detection of MPO within the blood vessels may be of great importance for clinical management of related vascular diseases.
    Method: In this study, a radioactive agent, 111In-bis-5HT-DTPA was synthesized to detect MPO for early diagnosis. The 5HT base agent could oligomerize by itself or with proteins through a specific mechanism mediated by myeloperoxidase. For in vitro study, the agent was incubated with myeloperoxidase and hydrogen peroxide to confirm the aggregation with the enzyme. For animal study, apoE knockout mice were used to generate plaque and atherosclerosis changes for investigation with blood analysis and histopathologic studies. NanoSPECT/CT imaging and biodistribution assay were carried out to ensure the binding (with MPO) of 111In-Bis-5HT-DTPA with MPO in a murine atherosclerotic model.
    Results: Bis-5HT-DTPA was synthesized and its structure confirmed by1H-NMR and ESI-MASS. 111In-bis-5HT-DTPA synthesized in this study exhibited ≧ 95% radiochemical purity and high stability in rat plasma. MALDI-TOF spectrum demonstrated that the 5HT base agent could oligomerize by itself. The nanoSPECT/CT imaging study indicated that the accumulation of
    iii
    111In-Bis-5HT-DTPA around the heart in apo E knockout mice was apparently more significant than that of the wild type mice. In the biodistribution study, the artery wall uptake of 111In-bis-5HT-DTPA oligomer in the artery wall of apo E knockout mice was about 1.38±0.03-fold higher than that in the wild type mice at 1 hour. The elimination rate of 111In-bis-5HT-DTPA from the blood vessel in apoE KO mice was 0.14±0.09 % ID/g/h, whereas that in the wild type mice was 3.88±0.25 % ID/g/h (P = 0.010, P<0.05).
    Conclusion: From the imaging and biodistribution study, the radioactivity signal around the heart in apo E knockout mice is significantly higher than that of the wild type mice. It revealed that 111In-Bis-5HT-DTPA can accumulate1.38±0.03-fold higher in the aorta of apo E knockout mice than in the wild type mice. In summary, this study has described a fundamental radionuclide pharmacokinetic and biodistribution results in apoE knockout mice and possible utilization of oligomerization in 111In-Bis-5HT-DTPA for early detection of myeloperoxidase within the blood vessel wall.

    Table of Contents 摘要 i Abstract ii List of Tables vi List of Figures vii Chapter 1 vii Chapter 2 vii Chapter 3 vii CHAPTER 1. Introduction 1 1. The Role of Myeloperoxidase in Atherosclerosis 1 I. Atherosclerosis 1 II. Myeloperoxidase (MPO) 5 III. MPO Induce the generation of oxLDL 6 2. Lipoprotein metabolism and apo E 8 I. The role of apoE 8 II. ApoE KO mice 10 3. MPO sensing agents 11 4. Strategy and Goal of the Study 13 CHAPTER 2. Materials and Methods 15 1. Materials 15 2. Synthesis of Imaging Agent 17 3. Oligomerization 18 4. Quality control of the radiolabeling 18 5. In vitro stability studies 19 6. Animal model 19 7. Imaging 20 8. Blood analysis 21 9. Pharmacokinetic study 21 10. Biodistribution 21 11. Histopathologic processing 22 12. MTS assay 24 CHAPTER 3. Results and discussion 25 1. Synthesis of Imaging Agent 25 2. Oligomerization 31 3. Quality control of the radiolabeling 33 4. In vitro stability studies 34 5. MTS cell viability assay 35 6. Blood analysis 37 7. In vivo studies 39 I. Pharmacokinetic study 39 II. Biodistribution 41 8. Histopathology 48 9. SPECT/CT Imaging 53 CHAPTER 4.Conclusion 57 References 59

    References
    1. de Winther, M. P. and M. H. Hofker (2000). "Scavenging new insights into atherogenesis." J Clin Invest 105(8): 1039-1041.
    2. Shishehbor, M. H., M. L. Brennan, et al. (2003). "Statins promote potent systemic antioxidant effects through specific inflammatory pathways." Circulation 108(4): 426-431.
    3. Klebanoff, S. J. (2005). "Myeloperoxidase: friend and foe." J Leukoc Biol 77(5): 598-625.
    4. Libby, P. (2002). "Inflammation in atherosclerosis." Nature 420(6917): 868-874.
    5. Lusis, A. J. (2000). "Atherosclerosis." Nature 407(6801): 233-241.
    6. Skalen, K., M. Gustafsson, et al. (2002). "Subendothelial retention of atherogenic lipoproteins in early atherosclerosis." Nature 417(6890): 750-754.
    7. Rader, D. J. and A. Daugherty (2008). "Translating molecular discoveries into new therapies for atherosclerosis." Nature 451(7181): 904-913.
    8. Osipov, R. M., C. Bianchi, et al. (2009). "Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion." Circulation 120(11 Suppl): S22-30.
    9. Stephen, J. P. and Resham R. M. (2008). "New MRI technique detects response of atherosclerosis to treatment" WorldCare Clinical 2(10): April 21
    10. Fiedler, T. J., C. A. Davey, et al. (2000). "X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution." J Biol Chem 275(16): 11964-11971.
    11. Fenna, R., J. Zeng, et al. (1995). "Structure of the green heme in myeloperoxidase." Arch Biochem Biophys 316(1): 653-656.
    12. Haas, A. (2007). "The phagosome: compartment with a license to kill." Traffic 8(4): 311-330.
    13. Schindhelm, R. K., L. P. van der Zwan, et al. (2009). "Myeloperoxidase: a useful biomarker for cardiovascular disease risk stratification?" Clin Chem 55(8): 1462-1470.
    14. Nicholls, S. J. and S. L. Hazen (2009). "Myeloperoxidase, modified lipoproteins, and atherogenesis." J Lipid Res 50 Suppl: S346-351.
    15. Wang, Z., S. J. Nicholls, et al. (2007). "Protein carbamylation links inflammation, smoking, uremia and atherogenesis." Nat Med 13(10): 1176-1184.
    16. Nicholls, S. J. and S. L. Hazen (2005). "Myeloperoxidase and cardiovascular disease." Arterioscler Thromb Vasc Biol 25(6): 1102-1111.
    17. Rees, M. D., J. M. Whitelock, et al. (2010). "Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan." Matrix Biol 29(1): 63-73.
    18. Mathew, M., E. Tay, et al. (2010). "Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects." Cardiovasc Diabetol 9: 9.
    19. Davies, M. J. (2011). "Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention." J Clin Biochem Nutr 48(1): 8-19.
    20. Moore, K. J. and I. Tabas (2011). "Macrophages in the pathogenesis of atherosclerosis." Cell 145(3): 341-355.
    21. Zhang, S. H., R. L. Reddick, et al. (1992). "Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E." Science 258(5081): 468-471.
    22. Schafers, M., B. Riemann, et al. (2004). "Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo." Circulation 109(21): 2554-2559.
    23. Jawien, J., P. Nastalek, et al. (2004). "Mouse models of experimental atherosclerosis." J Physiol Pharmacol 55(3): 503-517.
    24. Reddick, R. L., S. H. Zhang, et al. (1998). "Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice." Atherosclerosis 140(2): 297-305.
    25. Ni, M., W. Q. Chen, et al. (2009). "Animal models and potential mechanisms of plaque destabilisation and disruption." Heart 95(17): 1393-1398.
    26. Hussain, M. M., T. L. Innerarity, et al. (1995). "Chylomicron metabolism in normal, cholesterol-fed, and Watanabe heritable hyperlipidemic rabbits. Saturation of the sequestration step of the remnant clearance pathway." J Biol Chem 270(15): 8578-8587.
    27. McMillen, T. S., J. W. Heinecke, et al. (2005). "Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice." Circulation 111(21): 2798-2804.
    28. Schmitz, G. and M. Grandl (2007). "Role of redox regulation and lipid rafts in macrophages during Ox-LDL-mediated foam cell formation." Antioxid Redox Signal 9(9): 1499-1518.
    29. Jessup, W., P. Wilson, et al. (2002). "Oxidized lipoproteins and macrophages." Vascul Pharmacol 38(4): 239-248.
    30. Fischer, B., A. von Knethen, et al. (2002). "Dualism of oxidized lipoproteins in provoking and attenuating the oxidative burst in macrophages: role of peroxisome proliferator-activated receptor-gamma." J Immunol 168(6): 2828-2834.
    31. van den Elzen, P., S. Garg, et al. (2005). "Apolipoprotein-mediated pathways of lipid antigen presentation." Nature 437(7060): 906-910.
    32. Shao, B., C. Tang, et al. (2010). "Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export." J Lipid Res 51(7): 1849-1858.
    33. Querol, M., J. W. Chen, et al. (2005). "DTPA-bisamide-based MR sensor agents for peroxidase imaging." Org Lett 7(9): 1719-1722.
    34. Querol Sans, M., J. W. Chen, et al. (2005). "Myeloperoxidase activity imaging using (67)Ga labeled substrate." Mol Imaging Biol 7(6): 403-410.
    35. Chen, J. W., W. Pham, et al. (2004). "Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis." Magn Reson Med 52(5): 1021-1028.
    36. Querol, M., J. W. Chen, et al. (2006). "A paramagnetic contrast agent with myeloperoxidase-sensing properties." Org Biomol Chem 4(10): 1887-1895.
    37. Chen, J. W., M. Querol Sans, et al. (2006). "Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates." Radiology 240(2): 473-481.
    38. Bogdanov, A., Jr., H. W. Kang, et al. (2007). "Synthesis and testing of a binary catalytic system for imaging of signal amplification in vivo." Bioconjug Chem 18(4): 1123-1130.
    39. Ronald, J. A., J. W. Chen, et al. (2009). "Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques." Circulation 120(7): 592-599.
    40. Rodriguez, E., M. Nilges, et al. (2010). "Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity." J Am Chem Soc 132(1): 168-177.
    41. Breckwoldt, M. O., J. W. Chen, et al. (2008). "Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase." Proc Natl Acad Sci U S A 105(47): 18584-18589.
    42. C. L. Tseng, J. M. Lo, et al. (1987). "Separation of Radionuclides from water by Magnesium Oxide Adsorption." Anal Sci 3(5): 437-440.
    43. S. J. Yeh, J. M. Lo, et al. (1988). "Radiochemical Separation by Magnesium Oxide Adsorption and Its Application." J Radioanal Nucl Chem- Articles 124(1): 157-170.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE