研究生: |
趙貫宇 Chao, Kuan-Yu. |
---|---|
論文名稱: |
以作業研究方法管理太陽能電運用-以個案公司為例 Application of Operations Research Methods on Managing Solar Power Usage-A case study |
指導教授: |
李雨青
Lee, Yu-Ching |
口試委員: |
徐昕煒
Hsu, Hsin-Wei 馬綱廷 Ma, Kang-Ting 張文珠 Chang, Wen-Chu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 動態規劃 、線性規劃 、單純形法 、經濟訂單量 、太陽能電池 |
外文關鍵詞: | Dynamic programming, Linear programming, Simplex method, Economic order quantity, Solar cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地球當前面臨的「暖化」危機,主因來自於人類使用石化燃料(天燃氣、煤炭、石油等)所排放出來的溫室氣體,其中以二氧化碳為最大宗,甲烷與一氧化二氮居次。溫室氣體對環境的影響是極其劇烈的,氣候的變遷、物種的滅絕、海平面的上升,無一不威脅著地球萬物與人類的未來。
目前人類對石化能源的依賴很重,無法單靠植樹吸收二氧化碳來達成碳平衡。急須開發對環境衝擊較小的再生能源來降低對石化能源的依賴。而其中又以太陽能與風能為最廣泛、最隨處可得的再生能源。
本實驗以自身公司的頂樓空地作為裝置太陽能板與風力發電風扇的實驗空間。首先根據所選用的太陽能板與風力發電機的體積大小、發電功率、發電效能,以單純形法,算出這個有限空間內,可得最大發電量的太陽能電池及風力發電機數量組合,進而得出單純建置太陽能電池為最具效益的方案。
而為了因應太陽能發電功率隨日曬角度、天候狀況,一天當中時時刻刻都在變動,本實驗接著透過動態規劃演算法,計算出當下太陽能發電功率所能供應的負載數量與消耗功率總和,再由程式搭配電子電路執行對負載開關的控制,使負載消耗功率總和與太陽能發電功率匹配,盡可能地將太陽能當下產出的電能用盡。
最終,利用電錶(瓦時計),測得導入太陽能電後節約下來的電量,再代入二氧化碳/電量排放係數,便可求得建置太陽能發電系統後減少了多少碳排放量。以本實驗而言,七月平均每日可節電2.25度,而我國平均每發一度電的二氧化碳排放量為0.554公斤,節電2.25度可視為少製造二氧化碳1.247公斤,相當於41.6棵樹一天的二氧化碳吸收量。
Global warming crisis we’re facing today is mainly caused by human beings using fossil fuels (natural gas, coal, oil, etc.) that emit greenhouse gases, of which carbon dioxide is the largest, and methane and nitrous oxide are the second. The impact of greenhouse gases on the environment is extremely dramatic, climate change, extinction of species, and rising sea level, all threaten the future of all creatures and human beings.
At present, humans rely heavily on petrochemical energy, and it is impossible to achieve carbon balance by simply planting trees to absorb carbon dioxide. To reduce dependence on petrochemical energy, there's an urgent need to develop renewable energy that has less environmental impact. And among all the renewable resources, solar energy and wind energy are the most widely used.
We install solar panels and wind turbines on the rooftop of Chunghua Telecom Company’s Building for field experiments.The results concludes that setting up solar cells alone is the most effective solution according to the parameters of the selected solar panels and wind turbines, the size, the power generation, and the power generation efficiency, the number combination of solar cells and wind turbines that can achieve the maximum power generation in this limited area is calculated by simplex method.
However, solar energy is greatly affected by weather factors such as sunlight intensity. Owing to the internittent and unpredictable characteristics, it must be supported by storage devices like batteries or connected to grid-connected facilities. This not only increases the technical difficulties, but also raise the cost. Furthermore, Taiwan's renewable energy technology started late, the development of energy storage technology is still immature. Therefore, this experiment subsequently utilizes the solar power that is changing all the time through dynamic programming. With the electronic circuits, we can control the type and quantity of loads to achieve “real-time and ready-to-use” all the generated solar power, so we can reduce the dependence on the storage facilities.
Finally, we use a Watt-hour meter to measure the amount of electricity saved after introduction of solar power, and then the carbon dioxide emission/ electricity factor is substituted, so we can get how much carbon emission is reduced after the solar energy is introduced. For the solar power generation system built in this experiment, the average daily electricity saving in July is 2.25 kW·h, and the average carbon dioxide emission per kW·h is 0.554 kilograms. The power saving of 2.25 kW·h can be regarded as the emission reduction of 1.247 kilograms of carbon dioxide, which is equivalent to the amount of carbon dioxide absorbed by 41.6 trees in a day.
1.王喆(2010)。最佳化技術在太陽能發電系統規劃之探討。南台科技大學電機工程研究所碩士論文。
2.古世炖(2015)。多晶矽太陽能電池碳足跡之研究。明新科技大學工業工程與管理系碩士論文。
3.台灣電力公司。各縣市太陽光電容量因。 2019年7月30日,取自:
https://www.taipower.com.tw/tc/page.aspxmid=207&cid=165&cchk=a83cd635-a792-4660-9f02-f71d5d925911
4.台灣自來水公司。水費及各項服務費收費標準。 2019年1月29日。取自: https://www.water.gov.tw/ct.aspx?xItem=1977&ctNode=813&mp=1
5.胡凱睿(2015)。導入再生能源後對電力輸配電之影響。明新科技大學工業工程與管理系碩士論文。
6.行政院環境保護署。環境資源資料庫。2019年8月21日。取自: https://erdb.epa.gov.tw/DataRepository/EnvMonitor/AtmMdWeatherMonthly.aspx
7.吳知易。太陽能電池原理。2019年9月19日。取自:
http://eportfolio.lib.ksu.edu.tw/user/T/H/T098000033-20110511112715.pdf
8.呂少君(2005)。應用混合差分進化演算法及動態規劃法於發輸電系統虛功補償與調度。 國立中正大學電機工程系碩士論文。
9.風光電能源科技。太陽能系統介紹。2019年9月20日。取自: http://www.eptech.com.tw/index_php/solar-power-system/solar-power-system.html
10.高翊倫(2009)。建構台灣地區太陽能發電系統之發電量預測模型。交通大學工業工程與管理學系碩士論文。
11.陳彥均,彭兆川,黃渡根,黃郁文(2011)。太陽光電發電系統規設與設置探討。中華技術期刊,第91期專題報導。
12.黃欣惠(2004)。能源部門二氧化碳排放基線資料庫之建立與以再生能源進行排放減量之潛力分析。交通大學環境工程研究所碩士論文。
13.楊俊英(2019)。太陽光電公共建築設置應用。工研院太陽光電科技中心。
14.經濟部能源局(2018)。全國電力排放系數。2019年7月25日。取自:
https://www.moeaboe.gov.tw/ECW/populace/news/News.aspx?kind=1&menuid=41&news_id=15085
15.鄭壽福(2002)。抽蓄電廠抽水調度最佳化之研究―動態規劃法之應用。交通大學經營管理研究所碩士論文。
16.蕭德仁(2005)。提升太陽能電池發電效率參數與機構之研究。正修科技大學機電工程研究所碩士論文。
17.聯合再生能源股份有限公司。產品規格書資料。2019年4月29日。取自: https://www.urecorp.com/
18.環境品質文教基金會。樹木對環境的貢獻。2019年8月21日。取自: http://www.eqpf.org/sf/3-1.htm
19.Boaro, M., Fuselli, D., De Angelis, F., Liu, D., Wei, Q., & Piazza, F. (2013). Adaptive dynamic programming algorithm for renewable energy scheduling and battery management. Cognitive Computation, 5(2), 264-277.
20.De, A. R., & Musgrove, L. (1988). The optimization of hybrid energy conversion systems using the dynamic programming model—Rapsody. International Journal of Energy Research, 12(3), 447-457.
21.Fuselli, D., De Angelis, F., Boaro, M., Squartini, S., Wei, Q., Liu, D., & Piazza, F. (2013). Action dependent heuristic dynamic programming for home energy resource scheduling. International Journal of Electrical Power & Energy Systems, 48, 148-160. Paulina Ramirez-Del-Barrio.
22.Gurobi Optimization, LLC. Gurobi Optimizer. Feb. 11, 2019.
https://www.gurobi.com/
23.Hachim, B., Dahlioui, D., & Barhdadi, A. (2018, December). Electrification of Rural and Arid Areas by Solar Energy Applications. In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-4). IEEE.
24.Hillier. F. S, & Lieberman. G. J (2015). Introduction to operations research (10th ed.). New York, NY: McGraw-Hill Education
25.Huang, T., & Liu, D. (2011, July). Residential energy system control and management using adaptive dynamic programming. In The 2011 International Joint Conference on Neural Networks (pp. 119-124). IEEE.
26.Karagiorgas, M., Tsoutsos, T., Drosou, V., Pouffary, S., Pagano, T., Lara, G. L., & Mendes, J. M. M. (2006). HOTRES: renewable energies in the hotels. An extensive technical tool for the hotel industry. Renewable and sustainable energy reviews, 10(3), 198-224.
27.Lewis, N. S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271), aad1920.
28.Liu, D., Xu, Y., Wei, Q., & Liu, X. (2017). Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 5(1), 36-46.
29.Lu.M. (2018). Approximate Dynamic Programming applied to a wind energy storage problem. Unpublished Master’s Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Regina-Pacis-Weg 3, 53113 Bonn
30.MacKay, D. J. (2013). Solar energy in the context of energy use, energy transportation and energy storage. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996), 20110431..
31.MBAlib. 單純形法(Simplex method). Feb. 12, 2019
https://wiki.mbalib.com/zh-tw/%E5%8D%95%E7%BA%AF%E5%BD%A2%E6%B3%95
32.Morningstar Corp. About MSView. May. 23, 2019.
https://www.morningstarcorp.com/msview/
33.Patterson, M. C., & Harmel, B. (2010). The Coin Changing Problem as a Mathematical Model. Journal of Applied Quantiative Methods, 5(2), 298-301.
34.Primus Wind Power. 風力發電機規範及價目. Aug. 06, 2019 https://www.tande.com.tw/rn-windgenerator.htm
35.Ramirez-Del-Barrio, P., Mendoza-Araya, P., Valencia, F., León, G., Cornejo-Ponce, L., Montedonico, M., & Jiménez-Estévez, G. (2017, October). Sustainable development through the use of solar energy for productive processes: The Ayllu Solar Project. In 2017 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1-8). IEEE.
36.Sioshansi, R., Madaeni, S. H., & Denholm, P. (2013). A dynamic programming approach to estimate the capacity value of energy storage. IEEE Transactions on Power Systems, 29(1), 395-403.
37.Tischer, H., & Verbic, G. (2011, November). Towards a smart home energy management system-a dynamic programming approach. In 2011 IEEE PES Innovative Smart Grid Technologies (pp. 1-7). IEEE.
38.Wei, Q., Shi, G., Song, R., & Liu, Y. (2017). Adaptive dynamic programming-based optimal control scheme for energy storage systems with solar renewable energy. IEEE Transactions on Industrial Electronics, 64(7), 5468-5478.
39.Zhao, X., Asante Antwi, H., & Yiranbon, E. (2014). Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models. The Scientific World Journal, 2014.Patterson, M. C., & Harmel, B. (2010). The Coin Changing Problem as a Mathematical Model. Journal of Applied Quantiative Methods, 5(2), 298-301.