簡易檢索 / 詳目顯示

研究生: 徐俊儒
Hsu, Chun-Ju
論文名稱: 計算三維超晶格複雜材料晶格中馬克斯威爾方程的特徵值問題
Computational Eigenvalue Problems for Three Dimensional Maxwell's Equations on Super-cells
指導教授: 林文偉
Lin, Wen-Wei
何南國
Ho, Nan-Kuo
口試委員: 王偉成
Wang, Wei-Cheng
李育杰
Lee, Yuh-Jye
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 43
中文關鍵詞: 光子晶體超晶格材料週期性堆疊馬克斯威爾方程快速傅立葉轉換
外文關鍵詞: Super-cells, Materials are stacked periodically
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前在我們的實驗室中,已可以將光子晶體三維空間中的14種布拉非晶格,透過 Yee's scheme 的離散方法離散馬克斯威爾方程,再分析其廣義特徵值問題,透過零空間免除法的技巧和快速傅立葉轉換的方式,來求得此特徵值問題較小的特徵值,進而繪製出各種晶體的能帶結構圖。然而卻只能計算單一晶格單一材料,無法計算兩種或多種材料,經過周期性排列堆疊而成的超晶格。因此此篇論文透過擴增其晶格生長方向向量、材料的移動判別法等,讓我們能夠建構並計算兩種以上材料堆疊而成的超晶格結構,將單晶格與超晶格做對照,能帶結構圖中有相同的能帶間隙和增根結果,輔合我們的預期和其固定的物理性質。透過此超晶格計算建構方法,我們能夠模擬不同材料、不同介電系數堆疊而成的超晶格,而我們主要的目標,是能建構出一種內部為絕緣體,材料交界表面卻可導電的特殊材料,並計算模擬出其的表面態情形。最後因晶格的堆疊而導致矩陣計算量以幾何倍數增加,因此我們也透過GPU的轉換使用,來提升其高效能計算速率。


    In our laboratory, we can already use the Yee’s scheme to discretize the Maxwell’s equation of the 14 Bravais lattices in the 3 dimensional photonic crystal, and then by the method of null space free as well as fast Fourier transformation, we can analyze its generalized eigenvalue problem to derive the smaller eigenvalue of this eigenvalue problem, and hence, plot the band-structure of the crystals. However, by doing so, we can only compute the crystals with unit-cells and cannot compute the super-cells containing two or more materials that is stacked periodically. Therefore, the main purpose of this thesis is to construct and compute the super-cell crystals stacked by two or more materials by scaling the lattice vector of the crystal and using the moving determinant to compare the band-gap and the eigenvalues from the band-structure of the unit-cell and the super-cell to observe whether it corresponds with the physical properties of what we expected. By using the super-cells computation method, we can modal super-cells with different material and dielectric coefficient. Our main goal is to construct a material where it is non-conductive in the inner part and conductive in the interface of the surface, and also modal its surface condition. Last, since the matrix computation increases exponentially with the number of the stacking, we enhance the efficiency by the GPU.

    1 Introduction 1 1.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Bravais lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Reciprocal Lattice and Brillouin Zone . . . . . . . . . . . . . . . . 2 1.4 Bloch’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Finite Differential and Boundary Conditions . . . . . . . . . . . . 4 1.6 Yee’s Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Explicit matrix representation of the curl operator 7 2.1 Matrix representation of double curl operator for unit-cell . . . . 7 2.2 Matrix representation of double curl operator for super-cells . . . 9 3 Eigen-decomposition of the partial derivative operators 13 3.1 Eigen-decomposition of the partial derivative operators for unit-cell 13 3.2 Eigen-decomposition of the partial derivative operators for super-cells 18 4 Eigen-decomposition of double curl and the Fast Fourier Transform Solver 24 4.1 Eigen-decomposition for double discrete curl operators for unit-cell 24 4.2 Eigen-decomposition for double discrete curl operators for super-cells 26 4.3 Fast Fourier Transform Solving Method . . . . . . . . . . . . . . . 28 5 Numerical Results 30 5.1 Numerical result of Super-cells eigenvalue problem . . . . . . . . . 32 5.2 Surface state of Different materials super-cells . . . . . . . . . . . 36 5.3 Average time for solving . . . . . . . . . . . . . . . . . . . . . . . 40 6 Conclusions 41

    [1] Xiang Ni1 Daria Smirnova1 Yuri S. Kivshar Alexey Slobozhanyuk1, S. Hossein
    Mousavi and Alexander B. Khanikaev1. Three-dimensional all-dielectric
    photonic topological insulator. 2016.
    [2] F. Bloch. Über die quantenmechanik der elektronen in kristallgittern.
    Zeitschrift für Physik A Hadrons and Nuclei, 52(7):555–600, 1929.
    [3] H.-E. Hsieh. 離散旋度算子的特徵分解及其在馬克斯威爾方程之應用. 臺灣
    大學數學研究所學位論文, pages 1–109, 2016.
    [4] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. Eigendecomposition
    of the discrete double-curl operator with application to fast eigensolver for
    three-dimensional photonic crystals. SIAM Journal on Matrix Analysis and
    Applications, 34(2):369–391, 2013.
    [5] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. Matrix representation
    of the double-curl operator for simulating three dimensional photonic crystals.
    Mathematical and Computer Modelling, 58(1):379–392, 2013.
    [6] Wei Zhi Huang. User guide for fame(fast algorithm of maxwell’s equations).
    2015.
    [7] U. S. Inan and R. A. Marshall. Numerical electromagnetics: the FDTD
    method. Cambridge University Press, 2011.
    [8] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic
    crystals: molding the flow of light. Princeton university press, 2011.
    [9] K. S. Kunz and R. J. Luebbers. The finite difference time domain method
    for electromagnetics. CRC press, 1993.
    [10] Wei-De Li. Eigenvalue problems of discrete curl operators on various lattices
    for simulating three dimensional photonic crystals. 2017.
    [11] U. Shmueli. International Tables for Crystallography, Volume B: Reciprocal
    Space. Springer Science & Business Media, 2008.
    [12] A. Taflove and S. C Hagness. Computational electrodynamics: the finitedifference
    time-domain method. Artech house, 2005.
    [13] B. Thidé. Electromagnetic field theory. Upsilon Books Uppsala, 2004.
    [14] Hsin-Han Tsai. A scalable and ultrafast eigensolver for three dimensional
    photonic crystals on gpu. 2016.
    [15] K. Yee. Numerical solution of initial boundary value problems involving
    maxwell’s equations in isotropic media. IEEE Transactions on antennas and
    propagation, 14(3):302–307, 1966.
    [16] 欒丕綱and 陳啟昌. 光子晶體: 從蝴蝶翅膀到奈米光子學. 五南圖書出版股
    份有限公司, 2005.

    QR CODE