簡易檢索 / 詳目顯示

研究生: 連奕鈞
Lien, Yi-Jyun
論文名稱: 三配位硼錯合物熱活化延遲螢光之研究
Three Coordinated TADF Boron(III) Complexes
指導教授: 季昀
Chi, Yun
口試委員: 徐秀福
Hsu, Hsiu-Fu
洪文誼
Hung, Wen-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 117
中文關鍵詞: 熱延遲螢光有機發光二極體
外文關鍵詞: Boron, TADF, OLED
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要以硼原子作為TADF分子設計概念,硼原子由於本身擁有空的p軌域,空軌域的存在容易導致分子內的電荷轉移現象,而此現象會影響本身物理以及化學的性質。文章裏頭主要有兩大類型的硼錯合物,第一類型硼錯合物主要為含氮原子的電子供體 (donor) 直接連接在以硼原子為主體的電子受體 (acceptor) 上面,此類型硼錯合物在光物理上面皆擁有傑出的光量子產率。利用改變電子供體擁有不同能階高低的HOMO可調控出不同顏色的放光,而當分子結構中擁有剛性最大的電子供體spiroacridine時,元件的外部量子效率 (EQE) 最大可高達19.1%。此種合成簡單且十足新穎的結構渴望在TADF OLED上有更好的發展潛力。而第二類型硼錯合物主要為在原本的氮原子和硼原子之間再多添加一個苯環,並研究苯環連接基對TADF的影響,結果發現,此類型的放光會比第一類型硼錯合物有大幅度的藍位移發生,且在同樣使用剛性電子供體spiroacridine,元件的外部量子效率(EQE)最大可高達24.3%。此兩種類型的硼錯合物討論,我們可以得知什麼樣形式的電子供體會是使元件效率達到最大化的關鍵,這裡所得到的結果將可以應用在未來TADF分子的設計上。


    Because of empty p orbital, we try to focus on Boron atom as main concept of TADF molecules. Empty p orbitals in molecule easily result in charge phenomenon, and this will affect both physics and chemistry properties. There are two types boron complexes included in article. The first type boron complex is about nitrogen atom in electron donor directly attach to boron atom in electron acceptor. This type boron complex show really great quantum yield of photophysics data and different electron donor with different energy level of HOMO can release different color of light. The most interesting thing is that when we use spiroacridine as electron donor which has better rigidity, device external quantum efficiency can achieve 19.1%. Simple syntheses and novel architecture will provide potential in future TADF OLED applications. The second type boron complex is about insert phenyl group between nitrogen atom and boron atom from original case and discuss effect of this phenyl group. We find emission great has blue shift relative to first type boron complex. Device can achieve 24.3% high external quantum efficiency, when we use spiroacridine as electron donor as well. These experiment data let us know the key point of choosing electron donor to achieve best external quantum efficiency in device. The result can apply in design of TADF molecule in the future.

    目錄 摘要 I ABSTRACT II 第一章、 序論 1 第一節、OLEDS的歷史與簡介 1 第二節、OLEDS元件製成與發光原理 2 第三節、螢光和磷光發光原理與機制 5 第四節、TADF近期發展 10 第五節、研究動機 22 第二章、實驗合成 26 第一節、試藥與儀器 26 一、試藥 26 二、儀器分析 26 第二節、電子供體的合成 29 合成D1 30 合成D2 32 合成D3 33 合成D4 35 合成D5 36 合成D6 37 合成D7 38 第三節、錯合物的合成 39 合成ACBM 40 合成PACBM 41 合成SACBM 42 合成PXZBM 43 合成ACPhBM 44 合成PACPhBM 45 合成SACPhBM 46 合成PXZPhBM 47 第三章、結果與討論 48 第一節、ACRIDINE DONOR B-N COMPLEXES 48 1. 合成與鑑定 48 2. X-ray單晶結構解析 49 3. 光物理性質探討 59 4. 理論計算結果與討論 65 5. 元件製作與探討 75 6. 電化學性質探討 78 7. 熱分析結果與討論 79 第二節、ACRIDINE DONOR B-PH-N COMPLEXES 82 1. 合成與鑑定 82 2. X-ray單晶結構解析 83 3. 光物理性質探討 86 4. 元件製作探討 90 5. 電化學性質探討 93 6. 熱分析結果與討論 94 第三節、PHENOXAZINE DONOR B-N AND B-PH-N COMPLEXES 96 1. 合成與鑑定 96 2. X-ray單晶結構解析 96 3. 光物理性質探討 101 4. 元件製作探討 102 5. 電化學性質探討 105 第四章、硼錯合物光譜資料 107 第五章、總結 115 第六章、參考資料 116

    [1] M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750.
    [2] C. Adachi, M. A. Baldo and S. R. Forrest, Journal of Applied Physics, 2000, 87, 8049.
    [3] T. Főrster, Discuss. Faraday Soc., 1959, 27, 7.
    [4] D. L. Dexter, The Journal of Chemical Physics, 1953, 21, 836.
    [5] M. Y. Wong and E. Zysman-Colman, Adv Mater, 2017, 29.
    [6] L. Brand, B. Witholt, in Methods Enzymol., Volume 11 (Ed.: C. H. W. Hirs), Academic Press, 1967, pp. 776-856.
    [7] F. A. Salazar, A. Fedorov, M. N. Berberan-Santos, Chem. Phys. Lett. 1997, 271, 361-366.
    [8] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato and C. Adachi, Adv Mater, 2009, 21, 4802.
    [9] J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. Miller, S. F. Mickenberg and J. C. Peters, J. Am. Chem. Soc. 2010, 132, 9499.
    [10] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki and C. Adachi, Appl. Phys. Lett. 2011, 98, 083302.
    [11] H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234.
    [12] B. S. Kim and J. Y. Lee, Advanced Functional Materials, 2014, 24, 3970.
    [13] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, J Am Chem Soc, 2012, 134, 14706.
    [14] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong and C. C. Wu, Adv. Mater. 2016, 28, 6976.
    [15] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P. Y. Huang, M. J. Huang, C. Z. Ren-Wu, C. Y. Yang, M. J. Chiu, L. K. Chu, H. W. Lin and C. H. Cheng, J. Am. Chem. Soc., 2016, 138, 628.
    [16] H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata and C. Adachi, Nat Commun, 2015, 6, 8476.
    [17] S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu and Y. Wang, Angew Chem Int Ed Engl, 2015, 54, 13068.
    [18] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki and C. Adachi, Adv Mater, 2013, 25, 3319.
    [19] Y. Cui, F. Li, Z. H. Lu and S. Wang, Dalton Trans, 2007, 2634.
    [20] K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi and H. Kaji, Angew Chem Int Ed Engl, 2015, 54, 15231.
    [21] T. Taniguchi, J. Wang, S. Irle and S. Yamaguchi, Dalton Trans, 2013, 42, 620.
    [22] T. L. Andrew and T. M. Swager, J Org Chem, 2011, 76, 2976.
    [23] M. Numata, T. Yasuda and C. Adachi, Chem Commun (Camb), 2015, 51, 9443.
    [24] G. Xie, X. Li, D. Chen, Z. Wang, X. Cai, D. Chen, Y. Li, K. Liu, Y. Cao and S. J. Su, Adv Mater, 2016, 28, 181.
    [25] I. S. Park, S. Y. Lee, C. Adachi and T. Yasuda, Advanced Functional Materials, 2016, 26, 1813.
    [26] Y. J. Shiu, Y. C. Cheng, W. L. Tsai, C. C. Wu, C. T. Chao, C. W. Lu, Y. Chi, Y. T. Chen, S. H. Liu and P. T. Chou, Angew Chem Int Ed Engl, 2016, 55, 3017.

    QR CODE