研究生: |
徐幸瑜 Hsing-Yu Hsu |
---|---|
論文名稱: |
克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用 MrkA, the major pilin of Klebsiella pneumoniae type 3 fimbriae — identification of critical regions for the fimbriae assembly and dispensable regions for display system development |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 克雷白氏肺炎桿菌 、第三型線毛 、主要單體蛋白 、呈現系統 、抗原決定位 |
外文關鍵詞: | klebsiella pneumoniae, type 3 fimbriae, major pilin, MrkA, display system, epitope, antigenic determinants |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第三型線毛為克雷白氏肺炎桿菌(Klebsiella pneumoniae)重要的毒力因子之一。組成克雷白氏肺炎桿菌的第三型線毛至少需四個相連的基因,分別為mrkA, mrkB, mrkC和mrkD。為了辨識主要單體MrkA蛋白質中影響MrkA-MrkA相互作用的重要區域,我們建立了MrkA隨機插入突變株。我們發現Class І pilins保留性胺基酸區域,對線毛主體(pilin)分子間的相互作用扮演重要角色。此外,我們發現片段插入MrkA低保留性的第140到第150個胺基酸之間,對線毛的功能也有影響。為了測試功能性,我們檢視MrkA插入突變株透過離心沉澱速率、菌液黏度、人類紅血球凝集、黏附膠原蛋白和生物膜形成測試,證實這些插入突變株會影響第三型線毛的生物活性。進一步利用穿透式電子顯微鏡,直接證實有四株MrkA插入突變株可在大腸桿菌細胞表面表現線毛。此外,我們挑選此四株仍可表現線毛的MrkA插入突變株,並於MrkA蛋白質塞入豬內源反轉錄外套蛋白病毒的抗原決定位。我們進一步證實,塞入抗原決定位的雜合型MrkA聚合體能在大腸桿菌中表現。克雷白氏肺炎桿菌為人類重要的病原菌,我們期望這些結果可以幫助了解第三型線毛的組裝機制,進而阻止此細菌的聚集與感染。未來,第三型線毛也有潛力可在大腸桿菌中當作呈現外來抗原決定位的一種工具。
Type 3 fimbriae is one of the major virulence properties associated with the pathogen Klebsiella pneumoniae. At least four linked genes, mrkA, mrkB, mrkC, and mrkD are required to produce type 3 fimbriae in K. pneumoniae. To identify regions on major pilin MrkA important for MrkA-MrkA interaction, random insertion mutagenesis was performed on this protein. Our results showed that amino acid regions, which are conserved among all subunits of Class І pilins, play a critical role in intermolecular interaction of MrkA. In addition, insertion at a variable region from their Asn-140 to Ile-150 affects pilus function. These mrkA insertion mutants were functionally assessed for the ability to agglutinate human erythrocytes, binding to type Ⅳ collagen, sedimentation rate, viscosity and biofilm formation, and the results showed that these insertion mutations affect the activity of type 3 fimbriae. Moreover, analysis using transmission electronic microscopy has demonstrated that four of the 5 aa-insertion mrkA mutants could express fimbriae on E. coli cell surface. At the insertion sites, we further inserted an Env protein antigenic determinant of porcine endogenous retrovirus. Our results demonstrated that the recombinant MrkA polymer with an insertion of the viral antigenic determinant is expressed in E. coli. K. pneumoniae is important human pathogen. We anticipate that the results obtained here will help to understand the type 3 pilus assembly mechanism in K. pneumoniae and employed in blocking the bacterial colonization and infections. In the future, the MrkA fimbriae may also be developed into a potent tool for the presentation of foreign antigenic determinants in E. coli.
Allen, B.L., Gerlach, G.F., and Clegg, S. (1991) Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J Bacteriol 173: 916-920.
Attridge, S.R., Wallerstrom, G., Qadri, F., and Svennerholm, A.M. (2004) Detection of antibodies to toxin-coregulated pili in sera from cholera patients. Infect Immun 72: 1824-1827.
Bullitt, E., Jones, C.H., Striker, R., Soto, G., Jacob-Dubuisson, F., Pinkner, J., Wick, M.J., Makowski, L., and Hultgren, S.J. (1996) Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper. Proc Natl Acad Sci U S A 93: 12890-12895.
Chiang, C.Y., Pan, Y.R., Chou, L.F., Fang, C.Y., Wang, S.R., Yang, C.Y., and Chang, H.Y. (2007) Functional epitopes on porcine endogenous retrovirus envelope protein interacting with neutralizing antibody combining sites. Virology 361: 364-371.
Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S.J., and Knight, S.D. (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061-1066.
Connell, I., Agace, W., Klemm, P., Schembri, M., Marild, S., and Svanborg, C. (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93: 9827-9832.
Di Martino, P., Livrelli, V., Sirot, D., Joly, B., and Darfeuille-Michaud, A. (1996) A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect Immun 64: 2266-2273.
Dodson, K.W., Jacob-Dubuisson, F., Striker, R.T., and Hultgren, S.J. (1993) Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci U S A 90: 3670-3674.
Duguid, J.P. (1959) Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol 21: 271-286.
Edwards, R.A., and Puente, J.L. (1998) Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 6: 282-287.
Georgiou, G., Stathopoulos, C., Daugherty, P.S., Nayak, A.R., Iverson, B.L., and Curtiss, R., 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15: 29-34.
Gerlach, G.F., Allen, B.L., and Clegg, S. (1988) Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae. J Bacteriol 170: 3547-3553.
Gerlach, G.F., Clegg, S., and Allen, B.L. (1989) Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171: 1262-1270.
Girardeau, J.P., Bertin, Y., and Callebaut, I. (2000) Conserved structural features in class I major fimbrial subunits (Pilin) in gram-negative bacteria. Molecular basis of classification in seven subfamilies and identification of intrasubfamily sequence signature motifs which might Be implicated in quaternary structure. J Mol Evol 50: 424-442.
Hedegaard, L., and Klemm, P. (1989) Type 1 fimbriae of Escherichia coli as carriers of heterologous antigenic sequences. Gene 85: 115-124.
Hornick, D.B., Thommandru, J., Smits, W., and Clegg, S. (1995) Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 63: 2026-2032.
Huang, Y.J., Wu, C.C., Chen, M.C., Fung, C.P., and Peng, H.L. (2006) Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun 350: 537-542.
Hultgren, S.J., Normark, S., and Abraham, S.N. (1991) Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45: 383-415.
Hung, D.L., Knight, S.D., Woods, R.M., Pinkner, J.S., and Hultgren, S.J. (1996) Molecular basis of two subfamilies of immunoglobulin-like chaperones. Embo J 15: 3792-3805.
Hung, D.L., and Hultgren, S.J. (1998) Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function. J Struct Biol 124: 201-220.
Jagnow, J., and Clegg, S. (2003) Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405.
Klemm, P., and Schembri, M.A. (2000a) Bacterial adhesins: function and structure. Int J Med Microbiol 290: 27-35.
Klemm, P., and Schembri, M.A. (2000b) Fimbrial surface display systems in bacteria: from vaccines to random libraries. Microbiology 146 Pt 12: 3025-3032.
Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T., and Hultgren, S.J. (1993) Structural basis of pilus subunit recognition by the PapD chaperone. Science 262: 1234-1241.
Langstraat, J., Bohse, M., and Clegg, S. (2001) Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69: 5805-5812.
Lee, P.Y., Chang, W.N., Lu, C.H., Lin, M.W., Cheng, B.C., Chien, C.C., Chang, C.J., and Chang, H.W. (2003) Clinical features and in vitro antimicrobial susceptibilities of community-acquired Klebsiella pneumoniae meningitis in Taiwan. J Antimicrob Chemother 51: 957-962.
Levine, M.M., and Edelman, R. (1990) Future vaccines against enteric pathogens. Infect Dis Clin North Am 4: 105-121.
Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S., and Hultgren, S.J. (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. Embo J 19: 2803-2812.
Mulvey, M.A., Lopez-Boado, Y.S., Wilson, C.L., Roth, R., Parks, W.C., Heuser, J., and Hultgren, S.J. (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282: 1494-1497.
O'Toole, G.A., and Kolter, R. (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449-461.
Old, D.C., Tavendale, A., and Senior, B.W. (1985) A comparative study of the type-3 fimbriae of Klebsiella species. J Med Microbiol 20: 203-214.
Podschun, R., and Ullmann, U. (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589-603.
Roberts, J.A., Kaack, M.B., Baskin, G., Chapman, M.R., Hunstad, D.A., Pinkner, J.S., and Hultgren, S.J. (2004) Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J Urol 171: 1682-1685.
Sauer, F.G., Futterer, K., Pinkner, J.S., Dodson, K.W., Hultgren, S.J., and Waksman, G. (1999) Structural basis of chaperone function and pilus biogenesis. Science 285: 1058-1061.
Sauer, F.G., Barnhart, M., Choudhury, D., Knight, S.D., Waksman, G., and Hultgren, S.J. (2000a) Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10: 548-556.
Sauer, F.G., Knight, S.D., Waksman and, G.J., and Hultgren, S.J. (2000b) PapD-like chaperones and pilus biogenesis. Semin Cell Dev Biol 11: 27-34.
Sauer, F.G., Mulvey, M.A., Schilling, J.D., Martinez, J.J., and Hultgren, S.J. (2000c) Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3: 65-72.
Schembri, M.A., Blom, J., Krogfelt, K.A., and Klemm, P. (2005) Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73: 4626-4633.
Sebghati, T.A., Korhonen, T.K., Hornick, D.B., and Clegg, S. (1998) Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun 66: 2887-2894.
Soto, G.E., Dodson, K.W., Ogg, D., Liu, C., Heuser, J., Knight, S., Kihlberg, J., Jones, C.H., and Hultgren, S.J. (1998) Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. Embo J 17: 6155-6167.
Striker, R., Jacob-Dubuisson, F., Freiden, C., and Hultgren, S.J. (1994) Stable fiber-forming and nonfiber-forming chaperone-subunit complexes in pilus biogenesis. J Biol Chem 269: 12233-12239.
Tarkkanen, A.M., Allen, B.L., Westerlund, B., Holthofer, H., Kuusela, P., Risteli, L., Clegg, S., and Korhonen, T.K. (1990) Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4: 1353-1361.
Thanassi, D.G., Saulino, E.T., and Hultgren, S.J. (1998a) The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1: 223-231.
Thanassi, D.G., Saulino, E.T., Lombardo, M.J., Roth, R., Heuser, J., and Hultgren, S.J. (1998b) The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci U S A 95: 3146-3151.
Voegele, K., Sakellaris, H., and Scott, J.R. (1997) CooB plays a chaperone-like role for the proteins involved in formation of CS1 pili of enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A 94: 13257-13261.
Witkowska, D., Mieszala, M., Gamian, A., Staniszewska, M., Czarny, A., Przondo-Mordarska, A., Jaquinod, M., and Forest, E. (2005) Major structural proteins of type 1 and type 3 Klebsiella fimbriae are effective protein carriers and immunogens in conjugates as revealed from their immunochemical characterization. FEMS Immunol Med Microbiol 45: 221-230.