研究生: |
張祐翔 CHANG, YU-HSIANG |
---|---|
論文名稱: |
應用模擬最佳化於FMS之機台與車輛同步排程 Simulation based optimization approach for simultaneous scheduling of machines and AGVs in FMS |
指導教授: | 林則孟 |
口試委員: |
廖崇碩
郭人介 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 彈性製造系統 、排程 、區域控制 、基因演算法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
傳統上之排程問題只考慮機台資源,但是在彈性製造系統(Flexible Manufacturing System, FMS)中除了機台資源外還包含搬運系統如自動物料搬運車輛(Automatic guided vehicles, AGV),而搬運工件的時間會導致機台的閒置,因此在本研究的目標是要同步(Simultaneous)處理作業排程與車輛排程,使總完工時間(Makespan)最小化。同時考量作業排程與車輛排程是一個複雜的NP-Hard問題,因此需要一個有效的搜尋方法。根據文獻指出演化式演算法在處理最佳化排程問題是較好的選擇,因此本研究利用基因演算法(Genetic Algorithm ,GA)產生作業排程,並利用車輛排程演算法對每一個作業去選擇車輛。將兩個方法結合以處理同時排程問題。在面臨多目標問題時則使用多目標基因演算法(Multi-Objective Genetic Algorithm, MOGA)。
在FMS當中,由於機台都為多功能機台,工件的同一作業可以選擇替代機台進行加工,這個特性更增加排程的複雜性;而替代機台會影響到總完工時間以及機台與車輛的利用率,因此除了利用機台選擇演算法使總完工時間最小化之外,機台的利用率平衡也是重要的指標。在文獻中以數學規劃求解同時排程問題,車輛搬運工件的時間都是以搬運時間除以車輛移動速度,並未考慮到車輛在途中可能因為壅塞而延遲搬運時間或是車輛鎖死(deadlock)的實際上會面臨到問題,因此本研究在FMS同步排程系統之建構以離散事件模擬來達到考量實務情況,以區域控制(zone-control)處理車輛鎖死的問題,並以模擬最佳化架構在基因演算法結合模擬模式來增快求解效率。
FMS當中的機台都為CNC機台,作業的加工時間幾乎都是確定的,但是作業的整備時間是具有變異性的,這個因素使整個模型具有隨機性,若只以模擬一次的數據便對其下定論,可能因為隨機造成的誤差導致決策錯誤,若模擬太多次則會導致模擬時間過長。因此利用OCBA(Optimal Computing Budget Allocation)分配較多模擬資源給無法明確分辨好壞與變異太大的方案,在滿足特定的P{CS}下,能利用最少的模擬資源找出準確的方案。在面臨多目標問題時則使用MOCBA((Multi-Objective Optimal Computing Budget)。
參考文獻
[1] 王治平,“實際零工式生產排程問題的派工法則”,政治大學資訊管理研究所碩士論文,2003。
[2] 吳盈志,“雙演化演算法之研究”,中原大學資訊管理研究所碩士論文,2009。
[3] 詹詩敏,“半導體封裝廠之機台配置問題”,清華大學工業工程與工程管理所碩士論文,2010。
[4] 田孝珍,“雙目標模擬最佳化在自動化物料搬運系統之應用”,清華大學工業工程與工程管理所碩士論文,2011。
[5] Abdelmaguid, T. F.,Nasef, A. O., Kamal, B. A. and Hassan, M. F., “A hybrid GA/Heuristic approach to the simultaneous scheduling of machines and automated guided vehicles”, International Journal of Production Research, Vol.42, No.2, 2004, pp267-281.
[6] Anwar, M. F. and Nagi, R., “Intergrated scheduling of material handling and manufacturing activities for JIT production of complex assemblies”, International Journal of Production Research, Vol.36, No.3, 1993, pp653-681.
[7] Babu, A. G., Jerald, J., Haq, A. N., Luxmi, V. M., Vigneswaralu, T. P., “Scheduling of machines and automated guided vehicles in FMS using differential evolution”, International Journal of Production Research, 48, 2010, pp4683-4699.
[8] Bagchi, T. P., “Multiobjective Scheduling by Genetic Algorithms”, Kluwer Academic Publishers: Boston, 1996.
[9] Bilge, U. and Ulusoy, G., “A time windows approach to simultaneous scheduling of machines and material handling system in an FMS”, Journal of Operations Research, Vol.43, No.6, 1995, pp1058-1070.
[10] Chen, C. H., Lee, L. H., “Stochastic Simulation Optimization an Optimal Computing Budget Allocation”, System Engineering and Operations Research, Vol.1, 2010.
[11] Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory of Scheduling, Addison Wesley, Reading Massachusetts., USA, 1967
[12] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II”, IEEE Trans Evol Comput, 6(2), 2002, pp182-197.
[13] Fanti, M. P., “Event-based controller to avoid deadlock and collisions in zone-control AGVs”, International Journal of Production Research, Vol.40, No.6, 2002, pp1453-1478.
[14] Fernández, J., Besuievsky, G., “Inverse lighting design for interior buildings integrating natural and artificial sources”, Computers & Graphics, Vol 36, No.8, 2012, pp1096-1108.
[15] Groover, M. P., Automation, Production Systems, and Computer Integrated Manufacturing, Printed-Hall of India, New Delhi, 1996.
[16] Hakimi-Asiabar, M., Ghodsypour, S. H., Kerachian, R., “Multi-objective genetic local search algorithm using Kohonen’s neural map”, Computers & Industrial Engineering, 56, 2009, pp1566-1576.
[17] Han, H. M., McGinnis, L. F., “Control of material handling transporter in automated manufacturing”, IIE Transactions, 21(2), 1989, pp184-190.
[18] Hansen, P., & Mladenivic, N., “Variable neighborhood search: Principles and application”, European Journal of Operation Research, 130, 2001, pp449-467.
[19] Harmonosky, C. M., “Simulation-based real-time scheduling:review of recent developments”, Procedings of the 1995 Winter Simulation Conference, 1995, pp220-224.
[20] Hart, W. E., “Adaptive Global Optimization with Local Search”, PhD Thesis, University of California, San Diego, 1994.
[21] Ilkyeong, M., Lee, J., “Genetic Algorithm Application to the Job Shop Scheduling Problem with Alternative Routing”,BK21 Logistics Team, Industrial Engineering, Pusan National University, 2000, pp1-99.
[22] Jerald, J., Asokan, P., Saravanan, P., Rani, D. C., “Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm”, International Journal Advanced Manufacturing Technology, 29, 2006, pp584-589.
[23] Karabuk, S., and SabunChoglu, I., “A beam search based algorithm for scheduling machines and AGVs in an FMS”, Proc. Second Industrial Engg. Res. Conf, 1993, pp308-312.
[24] Kim, K. W., Lee, D., Jeong, I.J., “Multi-objective Genetic Algorithm for Multistage-based Job Processing Schedules in FMS Environment”, IEEE International Conference on Control and Automation, 2007, pp.1705-1709.
[25] Kumar, M. V. S., Janardhana, R., Rao, CSP., “Simultaneous scheduling of machines and vehicles in an FMS environment with alternative routing”, International Journal Advanced Manufacturing Technology, 53, 2011, pp339-351.
[26] Lacomme, P., Moukrim, A., Tchernev, N., “Simultaneous job input sequencing and vehicle dispatching in a single-vehicle automated guide vehicle system:a heuristic branch-and-bound approach coupled with a discrete events simulation model”, International Journal of Production Research, Vol.43, No.9, pp1911-1942.
[27] Nasr, N. and Elsayed, E. A., “Job Shop with Alternative Machines”, International Journal of Production Research, Vol.28, No.9, 1990, pp1595-1609.
[28] Ombuki, B. M. and Ventresca, M., “Local Search genetic algorithms for the job shop scheduling problem”, Appl. Intell., Vol.21, No.1, 2004, pp99-109.
[29] Ono, I., Yamamura, M. and Kobayashi, S., “A genetic algorithm for job-shop scheduling problems using job-based order crossover”, in:Proceedings of ICEC’96, 1996, pp547-552.
[30] Parthasarthy, S., Rajendran, C., “A simulated annealing heuristic for scheduling to minimize weighted tardiness in a flowshop with sequence dependent setup times of jobs-a case study”, Prodouction Planning & Control, 8:5, 1997, pp475-485.
[31] Pasupathy, T., Rajendran, C., Suresh, R. K., “A multiobjective genetic algorthim for scheduling in flow shops to minimize the makespan and total flow time of jobs”, Internet. J. Adv. Manufacturing Tech, 27, 2006, pp804-815.
[32] Raman, N., Talbot, F. B., Rachamadugu, R. V., “Simultaneous scheduling machines and material handling devices in automated manufacturing”, Proceedings of second ORSA/TIMS Conference on Flexible Manufacturing System,1986, pp455-466.
[33] Reddy, B. S. P. and Rao, C. S. P., “A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS”, International Journal of Advanced Manufacturing Technology, 31, 2006, pp602-613.
[34] Satishkumar, M. V., “Simultaneous scheduling of machines and Agvs using evolutionary optimization algorithms”, PhD Thesis, Jawaharlal Nehru Technological University, 2011.
[35] Srinivas, N. and Deb, K., “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms”, Evolutionary Computation, Vol.2, 221-248, 1994.
[36] Stecke, K. E., “Design, planning, scheduling, and control problems of flexible manufacturing systems”, Annals of Operations Research, 3, 1985, pp.1-13.
[37] Subbaiah, K. V., Rao, M. N. and Rao, K.N., “Scheduling of AGVs and machines in FMS with makespan criteria using sheep flock heredity algorithm”, International journal of Physical Sciences, 4, 2009, pp139-148.
[38] Ulusoy, G., and Bilge, U., “Simultaneous Scheduling of machines and automated guided vehicles”, International Journal of Production Research, Vol.31, No.12, 1993, pp2857-2873.
[39] Ulusoy, G., Srvnkaya, F. – Serifogulg, Umit, Bilge, “A Genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles”, Computers & Operations Research, Vol.24, No.4, 1997, pp335-351.
[40] Vis, I., “Survey of Research in the Design and Control of Automated Guided Vehicle Systems”, European J. of Operational Res., 170, 2006, pp677-709.
[41] Wang, F. K. and Lin, J. T., “Performance evalution of an automated material handling system for a wafer fab”, Robotics and Computer-Integrated Manufacturing, vol. 20, 2004, pp91-100.
[42] Wilhelm, W. and Shin, H. “Effectiveness of alternative operations in a flexible manufacturing system”, International Journal of Production Research, 23, 1985, pp65-79.
[43] Yeh, M.S., Yeh, W.C., “Deadlock prediction and avoidance for zone-control AGVs”, International Journal of Production Research, 36(10), 1998, pp2879-2889.