研究生: |
張一寧 Teoh, Yi Ning |
---|---|
論文名稱: |
醯基自由基環化反應應用於異扭曲烷骨架之合成 Study the Application of Acyl Radical Cyclization for Constructing Isotwistance Skeleton |
指導教授: |
謝興邦
Hsieh, Hsing-Pang |
口試委員: |
林俊成
Lin, Chun-Cheng 汪炳鈞 Uang, Biing-Jiun 吳學亮 Wu, Hsyuh-Liang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 290 |
中文關鍵詞: | 醯基自由基環化反應 、異扭曲烷 、掩飾鄰苯醌 、同系化反應 |
外文關鍵詞: | isotwistance, homologation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的在於利用具有醛官能基的雙環[2.2.2]辛烯酮化合物進行醯基自由基環化及重排反應建立天然物常見的異扭曲烷結構,並探討雙環[2.2.2]辛烯酮骨架上的取代基對於此環化反應的影響。自由基反應前驅物醛類雙環[2.2.2]辛烯酮化合物之雙環結構可藉由掩飾鄰苯醌與丙烯醛進行具有位置選擇性的Diels-Alder反應來建立。接著進行同系化反應就可得到反應前驅物醛類化合物。最後,我們進行硫醇輔助醯基自由基反應得到中間體126接著會經由路徑A或B得到具有異扭曲烷結構的異構物,分別為5-exo-trig環化產物以及3-exo-trig重排產物。以上兩種途徑取決於立體效應、羰基效應以及雙環[2.2.2]辛烯酮化合物上二甲基酮之影響。我們從實驗結果發現從雙環[2.2.2]辛烯酮上酮類官能基對重排反應有非常重要的影響。當將雙環[2.2.2]辛烯酮上酮類官能基還原成羥基後,會使反應無法進行3-exo-trig環化反應,因此不會進行重排反應,而最後經路徑A只得到了5-exo-trig環化產物。當R2及R1位置立體障礙越大以及有二甲基取代,會使反應傾向於路徑B得到較多3-exo-trig重排產物;而當取代基為甲基時,將雙環[2.2.2]辛烯酮上二甲基縮酮酮移除,有利於5-exo-trig環化產物的形成。因此,本論文成功以不同條件控制醯基自由基反應得到5-exo-trig異扭曲烷骨架產物或是3-exo-trig重排異扭曲烷骨架產物。
The research focused on utilizing bicyclo[2.2.2]octone derivatives as an experimental platform to examine the substituent effect on the acyl radical cyclization reaction constructing isotwistane skeleton, which can be found in many natural products. The bicyclo[2.2.2]octone derivatives, prepared for the acyl radical cylization reaction, were obtained from the Diels-Alder reactions and followed by the homologation reactions. We successfully constructed isotwistance skeleton by the thiol-mediated acyl radical cyclization reaction. In the experiments, we found that the reaction tendency is affected by the steric hindrance, carbonyl group effect and the dimethoxy effect. Firstly, the carbonyl group in the bicyclo[2.2.2]octone derivatives is the mainly point to affect the rearrangement reaction. If the carbonyl group was reduced to alcohol, the acyl radical reaction would get only 5-exo-trig product. Secondly, the effect of steric hindrance could be observed when the size of the substituent increased in R2 and R1. The cylization reaction would tend avoid cyclizing to the bulky, so the production of the 3-exo-trig rearrangment product was improved Finally, the effect of the methoxy groups showed that the major product was the 5-exo-trig product. Consequently, we successfully controlled the reaction to favor 5-exo-trig or 3-exo-trig product with different conditions in this methodology.
1. (a) Sizemore, N.; Rychnovsky, S. D. Studies toward the Synthesis of Palhinine Lycopodium Alkaloids: A Morita-Baylis-Hillman/Intramolecular Diels-Alder Approach. Org. Lett. 2014, 16, 688–691. (b) Liu, L.; Liu, S.-C.; Jiang, L.-H.; Chen, X.-L.; Guo, L.-D.; Che, Y.-S. Chloropupukeananin, the First Chlorinated Pupukeanane Derivative, and Its Precursors from Pestalotiopsis fici. Org. Lett. 2008, 10, 1397–1400. (c) Liu, L.; Bruhn.T.; Guo, L.-D.; Gotz, D.C.G.; Brun. R.; Stich, A.; Che, Y.-S.; Bringmann, G. Chloropupukeanolides C–E: Cytotoxic Pupukeanane Chlorides with a Spiroketal Skeleton from Pestalotiopsis fici. Chem. Eur. J. 2011, 17, 2604–2613. (d) Torii, M.; Kato, H.; Hitora, Y.; Angjouw, E. D.; Magindaan, R. E. P.; Voogd, N. J. D; Tsukamoto, S. Lamellodysidines A and B, Sesquiterpenes Isolated from the Marine Sponge Lamellodysidea herbacea. J. Nat. Prod. 2017, 80, 2536–2541. (e) Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T.; Li, Q.; Fan, C.-A. Toward the Total Synthesis of Palhinine A: Expedient Assembly of Multifunctionalized Isotwistane Ring System with Contiguous Quaternary Stereocenters. Org. Lett. 2012, 14, 3696–3699. (f) Duan, S.; Long, D.; Zhao, C.; Zhao, G.; Yuan, Z.; Xie, X.; Fang, J.; She, X. Efficient construction of the A/C/D tricyclic skeleton of palhinine A. Org. Chem. Front. 2016, 3, 1137–1143.
2. (a) Liu, L.; Niu, S.-B.; Lu, X.-H.; Chen, X.-L.; Zhang, H.; Guo, L.-D.; Che, Y.-S. Unique Metabolites of Pestalotiopsis fici Suggest a Biosynthetic Hypothesis Involving a Diels–Alder Reaction and then Mechanistic Diversification. Chem. Commun. 2010, 46, 460–462. (b) Opatz, T.; Kauhl, U.; Emsermann, J. Marine Isonitriles and Their Related Compounds. Mar. Drugs. 2016, 14–16. (c) Yasman.; Edrada, R. A.; Wray, V.; Proksch, P. New 9-Thiocyanatopupukeanane Sesquiterpenes from the Nudibranch Phyllidia varicosa and Its Sponge-Prey Axinyssa aculeate. J. Nat. Prod. 2003, 66, 1512–1514. (d) Tian, D.-S.; Yi, P.; Xia, L.; Xiao, X.; Fan, Y.-M.; Gu, W.; Huang, L.-J.; David, Y.B.; Di, Y.-T.; Yuan, C.-M.; Hao, X.-J. Garmultins A–G, Biogenetically Related Polycyclic Acylphloroglucinols from Garcinia multiflora. Org. Lett. 2016, 18, 5904–5907.
3. (a) Singh, V.; Pal, S.; Mobin, S. M. Cycloaddition between Electron-Deficient π-Systems, Photochemical and Radical-Induced Reactions: A Novel, General, and Stereoselective Route to Polyfunctionalized Bridged Bicyclo[2.2.2]octanes, Bicyclo[3.3.0]octanes, Bicyclo[4.2.0]octanes, and Tricyclo[4.3.1.03,7]decanes. J. Org. Chem. 2006, 71, 3014–3025. (b) Srikrishna, A.; Satyanarayana, G. A Formal Total Synthesis of (±)-9-Isocyanoneopupukeanane. Tetrahedron 2005, 61, 8855–8859. (c) Yoshimitsu, T.; Sasaki, S.; Arano, Y.; Nagaoka, H. Studies on the Total Synthesis of (−)-CP-263,114. J. Org. Chem. 2004, 69, 9262–9268. (d) Gaugele, D.; Maier, M. E. Approach to the Core Structure of the Polycyclic Alkaloid Palhinine A. Synlett 2013, 24, 955–958. (e) Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)‐Isopalhinine A, (±)‐Palhinine A, and (±)‐Palhinine D. Angew. Chem. Int. Ed. 2018, 57, 15572–15576.
4. Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. Synthesis of Alpha-Hydroxycarbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241-3243.
5. Chatgilialoglu. C; Crich, D.; Komatsu, M.; Ryu, L. Chemistry of Acyl Radicals. Chem. Rev. 1999, 99, 1991–2070.
6. Kharasch, M. S.; Urry, W. H.; Kuderna, B. M. Reactions of Atoms and Free Radicals in Solution. The Addition of Aldehydes to Olefins. J. Org. Chem. 1949, 14, 248–253.
7. Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. Thiol-Catalyzed Acyl Radical Cyclization of Alkenals. J. Org. Chem. 2005, 70, 681–683.
8. Kuivila, H. G.; Walsh, E. J. The Reaction of Acyl Halides with Organotin Hydrides. The Mechanism of Aldehyde Formation. J. Am. Chem. Soc. 1966, 88, 571–576.
9. Cekovic, Z. Intramolecular Cyclization of Unsaturated Acyl Chlorides by Tributyltin hydride. Tetrahedron Lett. 1972, 13, 749–752.
10. Pfenninger, J.; Heuberger, C.; Graf, W. The Radical Induced Stannane Reduction of Selenoesters and Selenocarbonates: A New Method for the Degradation of Carboxylic Acids to nor‐Alkanes and for Desoxygenation of Alcohols to Alkanes. Helv. Chim. Acta 1980, 63, 2328–2337.
11. Boger, D. L.; Mathvink, R J. Acyl Radicals: Functionalized Free Radicals for Intramolecular Cyclization Reactions. J. Org. Chem. 1988, 53, 3377–3379.
12. Barton, D. H. R; George, M. V.; Tomoeda, M. Photochemical Transformations. Part XIII. A New Method for the pProduction of Acyl Radicals. J. Chem. Soc. 1962, 1967–1974.
13. (a) Coveney, D. J.; Patel, V. F.; Pattenden, G. Acylcobalt Salophen Reagents. Precursors to Acyl Radical Intermediates for Inter- and Intra-molecular Oxidative Michael Addition reactions. Tetrahedron Lett. 1987, 28, 5949–1952; (b) Patel, V. F.; Pattenden, G. Free Radical Reactions Initiated by Organocobalt Complexes. A New Method for the Degradation of Carboxylic Acids to Functionalised nor-Alkanes via Acylcobalt Salophen Intermediates. Tetrahedron Lett. 1988, 29, 707–710.
14. (a) Chen, C.; Crich, D.; Papadatos, A. The Chemistry of Acyl Tellurides: Generation and Trapping of Acyl Radicals, Including Aryltellurium Group Transfer. J. Am. Chem. Soc. 1992, 114, 8313–8314; (b) Chen, C.; Crich, D. The Free Radical Chemistry of Acyl Tellurides: Mechanistic Studies and Synthetic Applications. Tetrahedron Lett. 1993, 34, 1545–1548.
15. Ryu, I.; Kusano, K.; Ogawa, N.; Kambe, N.; Sonoda, N. Free Radical Carbonylation. Efficient Trapping of Carbon Monoxide by Carbon Radicals. J. Am. Chem. Soc. 1990, 112, 1295–1297.
16. Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo Park, 1978.
17. Fuente, J. D. La; Lissi, E. A.; Rozas, R. Electrogenerated Luminescence in the Kolbe Reactions of Pyruvic and Phenylglyoxylic Acids. Can. J. Chem. 1984, 62, 2117–2122.
18. Walsh, E. J.; Messinger II, J. M.; Groudoski, D. A.: Allchin, C. A. The Cyclization Reaction of 5-Hexenoyl chloride with Tri-n-butyltin hydride. Tetrahedron Lett. 1980, 21, 4409–4412.
19. Beckwith, A. L. J.; Schiesser, C. H. Regio- and Stereo-Selectivity of Alkenyl Radical Ring Closure: A Theoretical Study. Tetrahedron 1985, 41, 3925–3941.
20. Boger, D. L.; Mathvink, R. J. Tandem Free-Radical Alkene Addition Reactions of Acyl Radicals. J. Am. Chem. Soc. 1990, 112, 4003–4008.
21. Crich, D.; Eustace, K. A.; Fortt, S. M.; Ritchie, T. J. Acyl Radical Cyclizations in Synthesis. Part 2 Further Substituent Effects on the Mode and Efficiency of Cyclizaion of 6-Heptenoyl Radicals. Tetrahedron 1990, 46, 2135–2148.
22. Boger, D. L.; Mathvink, R. J. Acyl Radicals: Intermolecular and Intramolecular Alkene Addition Reactions. J. Org. Chem. 1992, 57, 1429–1443.
23. (a) Crich, D.; Batty, D. Acyl Radical Cyclizations in Synthesis. Part 4. Tandem Processes: the 7-endo/5-exo Serial Cyclization Approach to Enantiomerically Pure Bicyclo[5.3.0]decan-2-ones. J. Chem. Soc., Perkin Trans. 1 1992, 3193–3204. (b) Chatgilialoglu, C.; Ferreri, C.; Luarini, M.; Venturini, A.; Zavitsas, A. A. 5‐exo‐trig Versus 6-endo-trig Cyclization of Alk-5-enoyl Radicals: The Role of One‐Carbon Ring Expansion. Chem. Eur. J. 1997, 3, 376–387. (c) Giese, B.; Heinrich, N.; Horler, H.; Koch, W.; Schwarz, H. Experimental and Theoretical Studies on the Mechanism of 1,2‐Migration of Vinyl and Formyl Substituents in Free Radicals. Chem. Ber. 1986, 119, 3528–3535.
24. Batsanov, A.; Chen, L.; Gill, G. B.; Pattenden, G. Acyl Radical-Mediated Polyene Cyclisations Directed Towards Steroid Ring Synthesis. J. Chem. Soc., Perkin Trans. 1 1996, 45–55.
25. (a) Pattenden, G.; Roberts, L. Cascade Radical Processes Leading to Polycycle Constructions. The Total Synthesis of Spongian-16-one. Tetrahedron Lett. 1996, 37, 4191–4194. (b) Pattenden, G.; Roberts, L.; Blake, A. J. Cascade Radical Cyclisations Leading to Polycyclic Diterpenes. Total Synthesis of (±)-Spongian-16-one. J. Chem. Soc., Perkin Trans. 1 1998, 863–868.
26. Handa, S.; Pattenden, G.; Li, W.-S. A New Approach to Steroid Ring Construction Based on a Novel Radical Cascade Sequence. Chem. Commun. 1998, 311–312.
27. Zhang, L.-M.; Koreeda, M. Total Synthesis of (+)-Acanthodoral by the Use of a Pd-Catalyzed Metal-ene Reaction and a Nonreductive 5-exo-Acyl Radical Cyclization. Org. Lett. 2004, 6, 537–540.
28. Enquist, J. A.; Stloltz, B.M.; The Total Synthesis of (-)-Cyanthiwigin F by Means of Double Catalytic Enantioselective Alkylation. Nature 2008, 453, 1228–1231.
29. Liao, C.-C.; Peddinti, R. K. Masked o-Benzoquinones in Organic Synthesis. Acc. Chem. Res. 2002, 35, 856-866.
30. Kurti, L.; Herczegh, P.; Visy, J.; Simonyi, J.; Antus, S.; Pelter, A. New Insights into the Mechanism of Phenolic Oxidation with Phenyliodonium (III) Reagents. J. Chem. Soc., Perkin Trans. 1 1999, 379–380.
31. Harry, N. A.; Saranya, S.; Krishnan, K. K.; Anilkumar, G. Recent Advances in the Chemistry of Masked Ortho-Benzoquinones and Their Applications in Organic Synthesis. Asian J. Org. Chem. 2017, 6, 945-966.
32. Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, S.; Song. L.-D.; Shiao, H.-C. Generation, Stability, Dimerization, and Diels−Alder Reactions of Masked o-Benzoquinones. Synthesis of Substituted Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J. Org. Chem. 1999, 64, 4102-4110.
33. (a) 蕭暉議,壹:天然物(±)-Annuionone B 與 (±)-Tanarifuranonol 之全合成; 貳:新穎抗流行性感冒病毒藥物之發展研究,博士論文,國立清華大學,2009 年。 (b)Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. First Total Syntheses of (±)-Annuionone B and (±)-Tanarifuranonol. Org. Lett. 2008, 10, 449-452.
34. Bovicelli, P.; Antonioletti, R.; Mancini, S.; Causio, S. Expedient Synthesis of Hydroxytyrosol and its Esters. Synth Commun., 2007, 37, 4245-4252.
35. Hsu, D.-S.; Liao, C.-C. First Total Syntheses of (±)-Penicillones A and B. Org. Lett. 2007, 9, 4563-4565.
36. 林振瑋,以呋喃并嘧啶化合物為激光激酶抑制劑之研究,博士論文,國立清華大學,2009年。
37. Tanaka, M.; Okita, M.; Akamatsu, H.; Chiba, K.; Obaishi, H.; Nagakura, N.; Sakurai, H.; Yamatsu, I. Hydroxyindole Derivatives as Inhibitors of IL-1 Generation. II. Synthesis and Pharmacological Activities of (E)-3-(7-hydroxy-6-methoxyindole-4-yl)-2-Methylpropenoic Acid Derivatives. Eur. J. Med. Chem. 1996, 31, 187-198.
38. Boger, C.; Schmidt, A. W.; Knolker, H.-J. First Total Synthesis of Murrastifoline B and an Improved Route to Murrastifoline F. Synlett. 2014, 25, 1381-1384.
39. Nicolaou, K. C.; Namoto, K.; Ritzen, A.; Ulven, T.; Shoji, M.; Li. J.; Damico, G.; Liotta, D.; French, C. T.; Wartmann, M.; Altmann, K.-H.; Giannakakou, P. Chemical Synthesis and Biological Evaluation of cis- and trans-12,13-Cyclopropyl and 12,13-Cyclobutyl Epothilones and Related Pyridine Side Chain Analogues. J. Am. Chem. Soc. 2001, 123, 9313-9323.
40. 陳致銘,天然物 (±)-Isopalhinine A、(±)-Palhinine A 與 (±)-Palhinine D 的仿生合成,博士論文,國立清華大學,2019年。
41. Kaliappan, K.; Subba Rao. G. S. R. Synthesis Based on Cyclohexadienes. Part 24. A New Total Synthesis of Pupukean-2-one and a Facile Entry to Copa and Ylanga Type Sesquiterpene Skeletons. J. Chem. Soc., Perkin Trans. 1 1997, 3393–3399.
42. Lai, C.-H.; Shen, Y.-L.; Wang, M.-N.; Kameswara Rao, N. S.; Liao, C.-C. Intermolecular Diels-Alder Reactions of Brominated Masked o-Benzoquinones with Electron-Deficient Dienophiles. A Detour Method to Synthesize Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J.Org. Chem. 2002, 67, 6493-6502.