簡易檢索 / 詳目顯示

研究生: 劉明坤
Liu, Ming Kun
論文名稱: 研發重組桿狀病毒作為藥物篩選之平台
Development of recombinant baculovirus as a drug screening platform
指導教授: 詹鴻霖
Chan, Hong Lin
口試委員: 滕昭怡
Teng, Chao Yi
吳宗遠
Wu, Tzong Yuan
徐祖安
Hsu, Tsu An
金亭佑
Chin, Ting Yu
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 124
中文關鍵詞: 桿狀病毒表徵遺傳學內部核醣體進入位
外文關鍵詞: Baculovirus, Epigentics, IRES
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 桿狀病毒表現系統是目前相當成功的真核生物表現系統之一,其廣泛被利用在基礎病毒學研究、外源蛋白的生產、基因治療、生物殺蟲劑等。本研究則嘗試研發重組桿狀病毒作為藥物篩選之平台。篩藥原理為:假如一個藥物是 Histone deacetylase inhibitor (HDACi),那麼該藥物可透過穩定胞內組蛋白乙醯化的狀態,進而增加桿狀病毒所攜帶之外源基因 (如綠螢光基因) 的表現效率。利用此篩藥平台篩選 699 個候選藥物,其中綠螢光強度和對照組比較後,增加 3 倍以上的藥物有 45 個,增加 4 倍以上的藥物有14個。其中 Malotilate (MT)、Vorinostat (SAHA) 及 Sodium salicylate 可透過增加胞內組蛋白乙醯化而增加桿狀病毒表達外源基因的效率。然而,已有文獻指出 SAHA 及 Sodium salicylate 為 HDACi,但尚未有文獻指出 MT 具有抑制 HDACs 酵素活性之功能。篩選藥物的過程中發現拓撲異構酶抑制劑:Teniposide (VM-26)、Etoposide (VP-16) 可以明顯地增加綠螢光蛋白的表現量,但卻是透過誘發胞內 DNA damage response (DDR) 而造成。利用篩選到的藥物 (MT 及 VM-26) 配合抑癌蛋白 p53 的策略可以成功地殺死骨肉瘤細胞 (U2OS),效果類似 NaBt 配合 p53。透過 RNAi 干擾技術分析標準型 HDACs (HDAC1~11) 後發現桿狀病毒轉導哺乳動物細胞時,HDAC4 對於外源基因的表現扮演重要的角色。總合上述之結果:一、重組桿狀病毒可以有效地用來作為 HDACi 的初步篩選平台。二、除了穩定胞內組蛋白乙醯化的狀態外,誘發胞內 DDR 也可以增加桿狀病毒轉導 U2OS 細胞後表現外源基因之效率。三、HDAC 參與抑制桿狀病毒表達外源基因之效率,其中又以 HDAC4 較為重要。


    Baculovirus expression system (BEVS) is one of the successful eukaryotic expression system and used widely in basic virological researches, exogenous protein productions for medical usages and structure studies, gene therapy and development of biological insecticides. In this study, we developed recombinant baculovirus as a drug screening platform by the screening rational: if the compound(s) is/are HDACis then it(they) will enhance the baculovirus-mediated gene expression in mammalian cells and also stabilize the hyperacetylation state of histone. Through this drug screeing platform, we screened 699 candidates. Comparing to the control group, there are 45 drugs whose green fluorescence intensities are three times and 14 candidates whose green fluorescence intensities are fourth times. Three candidates, I-E6 (Malotilate, MT), III-H8 (Vorinostat, SAHA) and V-G1 (Sodium salicylate), can increase the level of acetyl histone H4 in U2OS cells. SAHA and Sodium salicylate have been reported as HDACis; however, no references indicated that MT is a HDACi. On the other hand, we found that topoisomerase inhibitors: Teniposide (VM-26), Etoposide (VP-16) can significantly increase the baculovirus-mediated green fluorescent protein expression by inducing intracellular DNA damage response (DDR). Combining MT and VM-26 with the tumor suppressor protein, p53 successfully killed osteosarcoma cells (U2OS), a similar effect combining NaBt with p53. Using RNA interference (RNAi) to analyze standard HDACs (HDAC1-11) and identifing HDAC4 as the critical factor for baculovirus transduction. These findings suggest recombinant baculovirus has a new application to be a screening platform for HDACis. In addition to stabilizing intracellular histone acetylation state, DDR can also increase the efficiency of exogenous gene exprssion in baculovirus- transduced U2OS cells. HDACs involved in the inhibition of baculovirus-mediated gene expression and HDAC4 is the more critical factor.

    目錄 中文摘要 I 英文摘要 III 第一章 文獻探討 1 1.1 昆蟲桿狀病毒 1 1.1.1 桿狀病毒的分類 1 1.1.2 桿狀病毒的生活史 2 1.1.3 桿狀病毒表現載體 3 1.1.4 桿狀病毒作為基因療法之載具 4 1.1.5 桿狀病毒與 DDR (DNA damage response) 的關係 6 1.2 表徵遺傳學 (Epigentics) 9 1.2.1 HDACs 的分類 9 1.2.2 HDACs 與癌症的關係 10 1.2.3 HDAC 抑制劑的分類 11 1.2.4 HDAC 抑制劑與桿狀病毒表現載體 11 1.3 內部核醣體進入位 (Internal ribosome entry site, IRES) 12 1.3.1 EV71 (Human enterovirus 71) IRES, EV71ir 15 1.3.2 RhPV (Rhopalosiphum padi virus) IRES, Rhir 15 1.3.3 Liu IRES, Lir 17 第二章 研究動機與實驗設計 19 第三章 材料方法 22 3.1 材料 22 3.1.1 細胞株 22 3.1.2 質體 23 3.1.3 藥品 25 3.1.4 抗體 26 3.1.5 引子 26 3.1.6 小分子干擾核糖核酸 (siRNA) 27 3.2 方法 27 3.2.1 質體構築之流程 27 3.2.2 重組病毒之建立 35 3.2.3 哺乳動物細胞轉導 (Transduction) 38 3.2.4 siRNA 轉染 38 3.2.5 螢光蛋白的活性檢測 39 3.2.6 細胞存活率分析 (MTT assay) 39 3.2.7 西方墨點法 (Western blot) 39 第四章 結果 41 4.1 開發桿狀病毒作為抗癌藥物 (HDACi) 篩選之平台 41 4.1.1 HDACi 於哺乳類系統中可增加桿狀病毒表現外源基因之效率 41 4.1.2 Malotilate (MT) 透過增加細胞內組蛋白乙醯化來增加桿狀病毒表現外源基因之效率 43 4.1.3 DDR 可增加桿狀病毒表達外源蛋白之效率 44 4.2 結合化學療法與基因療法對抗癌細胞生長 47 4.2.1 啟動子搭配 IRES 的策略成功在 U2OS 細胞中同時表現兩種蛋白 47 4.2.2 MT 或 VM-26 搭配 p53 蛋白可有效抑制癌細胞生長 48 4.3 探討 HDACs 於桿狀病毒轉導過程之角色 50 4.3.1 胞內 HDACs 含量在桿狀病毒轉導時扮演著重要的角色 50 4.3.2 HDAC4 在桿狀病毒轉導時扮演著重要的角色 52 第五章 討論 54 參考文獻 63 圖表 72 圖一、載體的構築。 72 圖二、四大類八種 HDACi 對於 U2OS 細胞之毒性分析。 74 圖三、四大類八種 HDACi 對於桿狀病毒於 U2OS 細胞中之轉導效率定性與定量之分析。 77 圖四、HDACi 對於 U2OS 細胞中組蛋白乙醯化的影響。 78 圖五、候選藥物對於 U2OS 細胞中組蛋白 H4 乙醯化的影響。 79 圖六、Malotilate (MT) 對於桿狀病毒於 U2OS 細胞中之轉導效率定性與定量之分析。 81 圖七、Malotilate (MT) 對於 U2OS 細胞中組蛋白 H4 乙醯化的影響之分析。 82 圖八、拓撲異構酶 I 抑制劑及拓撲異構酶II 抑制劑對於桿狀病毒轉導效率之定性分析。 83 圖九、分析 U2OS 細胞在被藥物誘發 DDR 的狀態下胞內組蛋白 H2AX 及 H2AXp 的變化。 86 圖十、以西方墨點法分析被病毒感染後胞內 p53 蛋白的含量。 88 圖十一、MT 或 VM26搭配 p53 蛋白對於 U2OS 細胞生長影響之定性分析。 90 圖十二、MT 或 VM26搭配 p53 蛋白對於 U2OS 細胞生長影響之定量分析。 93 圖十三、分析桿狀病毒在不同的哺乳類細胞中之轉導效率。 95 圖十四、分析不同哺乳類細胞中 HDACs 之含量。 97 圖十五、利用 siRNA 降解 U2OS 細胞內生性之 HDAC4。 99 圖十六、分析桿狀病毒在經過 siRNA 處理過的哺乳類細胞中之轉導效率。 101 表一、常見 HDAC 抑制劑的分類。 102 表二、分析並歸類有效提升桿狀病毒轉導效率之候選藥物。 103 表三、分析 CHO、U2OS、HeLa 及 MDA-MB 231等細胞株中 HDACs 之含量。 105 附錄 106 附錄一、嵌合性內部核糖體進入區序列之構築 106 附錄二、有效提升桿狀病毒轉導之候選藥物資訊 (藥物資訊來源:NCBI)。 124

    Abe, T., Hemmi, H., Miyamoto, H., Moriishi, K., Tamura, S., Takaku, H., Akira, S., and Matsuura, Y. (2005). Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol. 79, 2847–2858.
    van Attikum, H., and Gasser, S.M. (2009). Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 19, 207–217.
    Bassing, C.H., Chua, K.F., Sekiguchi, J., Suh, H., Whitlow, S.R., Fleming, J.C., Monroe, B.C., Ciccone, D.N., Yan, C., Vlasakova, K., et al. (2002). Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. U. S. A. 99, 8173–8178.
    Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784.
    Celeste, A., Difilippantonio, S., Difilippantonio, M.J., Fernandez-Capetillo, O., Pilch, D.R., Sedelnikova, O.A., Eckhaus, M., Ried, T., Bonner, W.M., and Nussenzweig, A. (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383.
    CHEN, C.-J., and THIEM, S.M. (1997). Differential Infectivity of TwoAutographa californicaNucleopolyhedrovirus Mutants on Three Permissive Cell Lines Is the Result oflef-7Deletion. Virology 227, 88–95.
    Chen, H.-Z., Wu, C.P., Chao, Y.-C., and Liu, C.Y.-Y. (2011). Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells. Biochem. Biophys. Res. Commun. 405, 297–302.
    Chen, W.Y., Bailey, E.C., McCune, S.L., Dong, J.Y., and Townes, T.M. (1997). Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc. Natl. Acad. Sci. U. S. A. 94, 5798–5803.
    Chen, Y.-J., Chen, W.-S., and Wu, T.-Y. (2005). Development of a bi-cistronic baculovirus expression vector by the Rhopalosiphum padi virus 5’ internal ribosome entry site. Biochem. Biophys. Res. Commun. 335, 616–623.
    Cimprich, K.A., and Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627.
    Condreay, J.P., Witherspoon, S.M., Clay, W.C., and Kost, T.A. (1999). Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. U. S. A. 96, 127–132.
    Cragg, G.M., and Newman, D.J. (2005). Plants as a source of anti-cancer agents. J. Ethnopharmacol. 100, 72–79.
    Crouch, E.A., and Passarelli, A.L. (2002). Genetic requirements for homologous recombination in Autographa californica nucleopolyhedrovirus. J. Virol. 76, 9323–9334.
    Di Renzo, F., Cappelletti, G., Broccia, M.L., Giavini, E., and Menegola, E. (2008). The inhibition of embryonic histone deacetylases as the possible mechanism accounting for axial skeletal malformations induced by sodium salicylate. Toxicol. Sci. Off. J. Soc. Toxicol. 104, 397–404.
    Domier, L.L., and McCoppin, N.K. (2003). In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. J. Gen. Virol. 84, 415–419.
    Dong, S., Wang, M., Qiu, Z., Deng, F., Vlak, J.M., Hu, Z., and Wang, H. (2010). Autographa californica Multicapsid Nucleopolyhedrovirus Efficiently Infects Sf9 Cells and Transduces Mammalian Cells via Direct Fusion with the Plasma Membrane at Low pH. J. Virol. 84, 5351–5359.
    Duisit, G., Saleun, S., Douthe, S., Barsoum, J., Chadeuf, G., and Moullier, P. (1999). Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J. Gene Med. 1, 93–102.
    Engelhard, E.K., Kam-Morgan, L.N., Washburn, J.O., and Volkman, L.E. (1994). The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. U. S. A. 91, 3224–3227.
    Flipsen, J.T., Martens, J.W., van Oers, M.M., Vlak, J.M., and van Lent, J.W. (1995). Passage of Autographa californica nuclear polyhedrosis virus through the midgut epithelium of Spodoptera exigua larvae. Virology 208, 328–335.
    Gaetano, C., Catalano, A., Palumbo, R., Illi, B., Orlando, G., Ventoruzzo, G., Serino, F., and Capogrossi, M.C. (2000). Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo. Gene Ther. 7, 1624–1630.
    Gaspar, M., and Shenk, T. (2006). Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc. Natl. Acad. Sci. U. S. A. 103, 2821–2826.
    Gomi, S., Zhou, C.E., Yih, W., Majima, K., and Maeda, S. (1997). Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. Virology 230, 35–47.
    Granados, R.R., and Lawler, K.A. (1981). In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108, 297–308.
    Groppelli, E., Belsham, G.J., and Roberts, L.O. (2007). Identification of minimal sequences of the Rhopalosiphum padi virus 5’ untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems. J. Gen. Virol. 88, 1583–1588.
    Guo, H., Choudhury, Y., Yang, J., Chen, C., Tay, F.C., Lim, T.M., and Wang, S. (2011). Antiglioma effects of combined use of a baculovirual vector expressing wild-type p53 and sodium butyrate. J. Gene Med. 13, 26–36.
    Haggarty, S.J., Koeller, K.M., Wong, J.C., Grozinger, C.M., and Schreiber, S.L. (2003). Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U. S. A. 100, 4389–4394.
    Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., and Strauss, M. (1995). Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. U. S. A. 92, 10099–10103.
    Hsiang, Y.H., Hertzberg, R., Hecht, S., and Liu, L.F. (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260, 14873–14878.
    Hu, E., Chen, Z., Fredrickson, T., Zhu, Y., Kirkpatrick, R., Zhang, G.F., Johanson, K., Sung, C.M., Liu, R., and Winkler, J. (2000). Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem. 275, 15254–15264.
    Hu, Y.-C., Yao, K., and Wu, T.-Y. (2008). Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev. Vaccines 7, 363–371.
    Isfort, R.J., Cody, D.B., Lovell, G., and Doersen, C.J. (1995). Analysis of oncogenes, tumor suppressor genes, autocrine growth-factor production, and differentiation state of human osteosarcoma cell lines. Mol. Carcinog. 14, 170–178.
    Jackson, R.J., and Hunt, T. (1982). The turnover of methionine in the Met-tRNA pool and the control of protein synthesis in reticulocyte lysates: no evidence that haem-deficiency promotes deacylation of Met-tRNAf. FEBS Lett. 143, 301–305.
    Jan, E. (2006). Divergent IRES elements in invertebrates. Virus Res. 119, 16–28.
    Jehle, J.A., Blissard, G.W., Bonning, B.C., Cory, J.S., Herniou, E.A., Rohrmann, G.F., Theilmann, D.A., Thiem, S.M., and Vlak, J.M. (2006). On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 151, 1257–1266.
    Jones, I., and Morikawa, Y. (1996). Baculovirus vectors for expression in insect cells. Curr. Opin. Biotechnol. 7, 512–516.
    Kieft, J.S. (2008). Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 33, 274–283.
    Kim, H.-J., and Bae, S.-C. (2011). Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 3, 166–179.
    Kost, T.A., and Condreay, J.P. (2002). Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 20, 173–180.
    Kudoh, A., Fujita, M., Zhang, L., Shirata, N., Daikoku, T., Sugaya, Y., Isomura, H., Nishiyama, Y., and Tsurumi, T. (2005). Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J. Biol. Chem. 280, 8156–8163.
    Kukkonen, S.P., Airenne, K.J., Marjomäki, V., Laitinen, O.H., Lehtolainen, P., Kankaanpää, P., Mähönen, A.J., Räty, J.K., Nordlund, H.R., Oker-Blom, C., et al. (2003). Baculovirus capsid display: a novel tool for transduction imaging. Mol. Ther. J. Am. Soc. Gene Ther. 8, 853–862.
    Kuo, M.H., and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays News Rev. Mol. Cell. Dev. Biol. 20, 615–626.
    Laakkonen, J.P., Mäkelä, A.R., Kakkonen, E., Turkki, P., Kukkonen, S., Peränen, J., Ylä-Herttuala, S., Airenne, K.J., Oker-Blom, C., Vihinen-Ranta, M., et al. (2009). Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PloS One 4, e5093.
    Lavin, M.F. (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769.
    Lilley, C.E., Carson, C.T., Muotri, A.R., Gage, F.H., and Weitzman, M.D. (2005). DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc. Natl. Acad. Sci. U. S. A. 102, 5844–5849.
    Liu, L.F. (1989). DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem. 58, 351–375.
    Liu, M.-K., Lin, J.-Z., Jinn, T.-R., Chan, H.-L., and Wu, T.-Y. (2015). Identification of Rhopalosiphum Padi Virus 5’ Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry. Int. J. Mol. Sci. 16, 16053–16066.
    Liu, M.-K., Lin, J.-J., Chen, C.-Y., Kuo, S.-C., Wang, Y.-M., Chan, H.-L., and Wu, T.Y. (2016a). Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response. Int. J. Mol. Sci. 17, 931.
    Liu, M.-K., Lin, J.-J., Chen, C.-Y., Kuo, S.-C., Wang, Y.-M., Chan, H.-L., and Wu, T.Y. (2016b). Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response. Int. J. Mol. Sci. 17, 931.
    Long, G., Pan, X., Kormelink, R., and Vlak, J.M. (2006). Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J. Virol. 80, 8830–8833.
    Lu, A., and Miller, L.K. (1995). Differential requirements for baculovirus late expression factor genes in two cell lines. J. Virol. 69, 6265–6272.
    Mähönen, A.J., Makkonen, K.-E., Laakkonen, J.P., Ihalainen, T.O., Kukkonen, S.P., Kaikkonen, M.U., Vihinen-Ranta, M., Ylä-Herttuala, S., and Airenne, K.J. (2010). Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J. Biotechnol. 145, 111–119.
    Mäkelä, A.R., Enbäck, J., Laakkonen, J.P., Vihinen-Ranta, M., Laakkonen, P., and Oker-Blom, C. (2008). Tumor targeting of baculovirus displaying a lymphatic homing peptide. J. Gene Med. 10, 1019–1031.
    Manal, M., Chandrasekar, M.J.N., Gomathi Priya, J., and Nanjan, M.J. (2016). Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorganic Chem. 67, 18–42.
    Matilainen, H., Rinne, J., Gilbert, L., Marjomäki, V., Reunanen, H., and Oker-Blom, C. (2005). Baculovirus entry into human hepatoma cells. J. Virol. 79, 15452–15459.
    Miller, L.K. (1988). Baculoviruses as gene expression vectors. Annu. Rev. Microbiol. 42, 177–199.
    Mitchell, J.K., and Friesen, P.D. (2012). Baculoviruses modulate a proapoptotic DNA damage response to promote virus multiplication. J. Virol. 86, 13542–13553.
    Mitchell, J.K., Byers, N.M., and Friesen, P.D. (2013). Baculovirus F-Box Protein LEF-7 Modifies the Host DNA Damage Response To Enhance Virus Multiplication. J. Virol. 87, 12592–12599.
    Monneret, C. (2005). Histone deacetylase inhibitors. Eur. J. Med. Chem. 40, 1–13.
    Nagayasu, H., Hamada, J., Kawano, T., Konaka, S., Nakata, D., Shibata, T., Arisue, M., Hosokawa, M., Takeichi, N., and Moriuchi, T. (1998). Inhibitory effects of malotilate on invasion and metastasis of rat mammary carcinoma cells by modifying the functions of vascular endothelial cells. Br. J. Cancer 77, 1371–1377.
    Niforou, K.M., Anagnostopoulos, A.K., Vougas, K., Kittas, C., Gorgoulis, V.G., and Tsangaris, G.T. (2008). The proteome profile of the human osteosarcoma U2OS cell line. Cancer Genomics Proteomics 5, 63–78.
    Nikitin, P.A., and Luftig, M.A. (2011). At a crossroads: human DNA tumor viruses and the host DNA damage response. Future Virol. 6, 813–830.
    Niu, M., Han, Y., and Li, W. (2008). Baculovirus up-regulates antiviral systems and induces protection against infectious bronchitis virus challenge in neonatal chicken. Int. Immunopharmacol. 8, 1609–1615.
    Passarelli, A.L., and Guarino, L.A. (2007). Baculovirus late and very late gene regulation. Curr. Drug Targets 8, 1103–1115.
    Paul, A., and Prakash, S. (2010). Baculovirus reveals a new pH-dependent direct cell-fusion pathway for cell entry and transgene delivery. Future Virol. 5, 533–537.
    Poeschl, A., Rehn, D., Dumont, J.M., Mueller, P.K., and Hennings, G. (1987). Malotilate reduces collagen synthesis and cell migration activity of fibroblasts in vitro. Biochem. Pharmacol. 36, 3957–3963.
    Roberts, L.O., and Groppelli, E. (2009). An atypical IRES within the 5’ UTR of a dicistrovirus genome. Virus Res. 139, 157–165.
    Rohrmann, G.F. (2013). Baculovirus Molecular Biology (Bethesda (MD): National Center for Biotechnology Information (US)).
    Royall, E., Woolaway, K.E., Schacherl, J., Kubick, S., Belsham, G.J., and Roberts, L.O. (2004). The Rhopalosiphum padi virus 5’ internal ribosome entry site is functional in Spodoptera frugiperda 21 cells and in their cell-free lysates: implications for the baculovirus expression system. J. Gen. Virol. 85, 1565–1569.
    Salminen, M., Airenne, K.J., Rinnankoski, R., Reimari, J., Välilehto, O., Rinne, J., Suikkanen, S., Kukkonen, S., Ylä-Herttuala, S., Kulomaa, M.S., et al. (2005). Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes. J. Virol. 79, 2720–2728.
    Shibata, T., Nagayasu, H., Hamada, J., Konaka, S., Hosokawa, M., Kawano, T., Kitajo, H., and Arisue, M. (2000). Inhibitory effects of malotilate on in vitro invasion of lung endothelial cell monolayer by human oral squamous cell carcinoma cells. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 21, 299–308.
    Shin, Y.C., Nakamura, H., Liang, X., Feng, P., Chang, H., Kowalik, T.F., and Jung, J.U. (2006). Inhibition of the ATM/p53 signal transduction pathway by Kaposi’s sarcoma-associated herpesvirus interferon regulatory factor 1. J. Virol. 80, 2257–2266.
    Spenger, A., Ernst, W., Condreay, J.P., Kost, T.A., and Grabherr, R. (2004a). Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expr. Purif. 38, 17–23.
    Spenger, A., Ernst, W., Condreay, J.P., Kost, T.A., and Grabherr, R. (2004b). Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expr. Purif. 38, 17–23.
    Stanbridge, L.J., Dussupt, V., and Maitland, N.J. (2003). Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer. J. Biomed. Biotechnol. 2003, 79–91.
    Sung, L.-Y., Chen, C.-L., Lin, S.-Y., Li, K.-C., Yeh, C.-L., Chen, G.-Y., Lin, C.-Y., and Hu, Y.-C. (2014). Efficient gene delivery into cell lines and stem cells using baculovirus. Nat. Protoc. 9, 1882–1899.
    Teng, C.-Y., Chang, S.-L., Tsai, M.-F., and Wu, T.-Y. (2013). Α-synuclein and β-synuclein enhance secretion protein production in baculovirus expression vector system. Appl. Microbiol. Biotechnol. 97, 3875–3884.
    Terenin, I.M., Dmitriev, S.E., Andreev, D.E., Royall, E., Belsham, G.J., Roberts, L.O., and Shatsky, I.N. (2005). A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol. Cell. Biol. 25, 7879–7888.
    Thompson, S.R., and Sarnow, P. (2003). Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 315, 259–266.
    Turnell, A.S., and Grand, R.J. (2012). DNA viruses and the cellular DNA-damage response. J. Gen. Virol. 93, 2076–2097.
    Volcy, K., and Fraser, N.W. (2013). DNA damage promotes herpes simplex virus-1 protein expression in a neuroblastoma cell line. J. Neurovirol. 19, 57–64.
    Weitzman, M.D., Lilley, C.E., and Chaurushiya, M.S. (2010). Genomes in conflict: maintaining genome integrity during virus infection. Annu. Rev. Microbiol. 64, 61–81.
    Witt, O., Deubzer, H.E., Milde, T., and Oehme, I. (2009a). HDAC family: What are the cancer relevant targets? Cancer Lett. 277, 8–21.
    Witt, O., Deubzer, H.E., Milde, T., and Oehme, I. (2009b). HDAC family: What are the cancer relevant targets? Cancer Lett. 277, 8–21.
    Woolaway, K.E., Lazaridis, K., Belsham, G.J., Carter, M.J., and Roberts, L.O. (2001). The 5’ untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J. Virol. 75, 10244–10249.
    Wu, T.-Y., and Liu, M.-K. (2012). Chimeral internal ribosomal entry site sequence and uses thereof.
    Wu, Y., Teng, C., Chen, Y., Chen, S., Chen, Y., Lin, Y., and Wu, T. (2008). Internal ribosome entry site of Rhopalosiphum padi virus is functional in mammalian cells and has cryptic promoter activity in baculovirus-infected Sf21 cells. Acta Pharmacol. Sin. 29, 965–974.
    Xiao, H., Mao, Y., Desai, S.D., Zhou, N., Ting, C.-Y., Hwang, J., and Liu, L.F. (2003). The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc. Natl. Acad. Sci. U. S. A. 100, 3239–3244.
    Yamano, T., Ura, K., Morishita, R., Nakajima, H., Monden, M., and Kaneda, Y. (2000). Amplification of transgene expression in vitro and in vivo using a novel inhibitor of histone deacetylase. Mol. Ther. J. Am. Soc. Gene Ther. 1, 574–580.
    謝建銘 (2009). 以桿狀病毒表現系統生產A型肉毒桿菌毒素做為疫苗可行性的分析__臺灣博碩士論文知識加值系統.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE