簡易檢索 / 詳目顯示

研究生: 陳聲宇
Sheng-Yu Chen
論文名稱: 自我組裝金屬矽化物奈米線之研究
Growth of Self-Assembled Epitaxial Metal Silicide Nanowires
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 112
中文關鍵詞: 矽化物奈米線自我組裝
外文關鍵詞: silicide, nanowire, self-assembly
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬矽化物因具有高熔點、良好熱穩定性、及低電阻等優點,故其在VLSI半導體製程上有相當廣泛的應用。隨著傳統微影術(lithography)在最小線寬上所面臨的瓶頸,一種「由下而上」(bottom up)的「自我組裝」(self-assembly)合成方式開始引起廣泛研究與討論。
    本論文以合成自我組裝磊晶金屬矽化物奈米線為主體,研究其生長機制,並進一步藉由製程上對於其成長動力學的控制來加以控制奈米線的形貌,增加其長寬比(aspect ratio),包括使用「反應性蒸鍍磊晶」(reactive deposition epitaxy)與「氮化矽非晶層調節磊晶」(nitride-mediated epitaxy)等方法。主要的研究是在鐵、鈷、鎳等過渡金屬(transition Metal)矽化物上。並利用電子顯微鏡等儀器進行觀察與分析。
    研究上首先是利用反應性蒸鍍磊晶法成長矽化鎳奈米線,基於「形狀轉變」(shape transition)理論,金屬原子蒸鍍在加熱的矽基板上將有足夠的動能使其在矽基表面移動,貼附於已生成的矽化物晶粒之上並以一維成長的方式來降低總能量。加熱的溫度對所生成的矽化物奈米線形貌影響很大,在750 ℃下我們可得到磊晶成長於矽基上,長寬比達30的自我組裝矽化鎳奈米線
    以此方式生長的奈米線,在成長過程中牽涉到原子的再排列(rearrangement),奈米線的生長與否將取決於原子再排列的速度與矽化物成長的速度,在前者佔優勢的情況下,奈米線方得以生成。因此我們首先利用在矽基上先鍍上一層非晶質氮化矽薄膜的方式,來降低蒸鍍原子到達矽基上的通量,進而降低矽化物體積的成長速率,而達成促進矽化物奈米線生長之目的,我們成功的將此方法運用於鐵、鈷、鎳等過鍍金屬矽化物系統之上,生長出高長寬比的矽化物奈米線。在鎳化矽系統上,利用此方式將可使得奈米線的長寬比提升達八倍。而在矽化鐵系統上,極慢的生長速率使得我們能藉由加熱時間來控制奈米線的長度。
    另一種方法則是在蒸鍍源中掺入金原子,金在矽化物生長時會在矽化物與矽基的界面偏析,由於金跟矽的共晶溫度非常低(360 ℃),因此在成長溫度下矽化物與矽的界面會形成一局部熔融的通道,原子再排列的過程能藉由此通道而快速進行,因而達到促進矽化物奈米線之目的。


    Self-assembled epitaxial NiSi2 nanowires have been fabricated on (001)Si by reactive deposition epitaxy (RDE). The RDE method promoted nanowire growth since it provides deposited atoms sufficient kinetic energy for movement on the Si surface during the growth of silicide islands. The twin-related interface between NiSi2 and Si is directly related to the nanowire formation since it breaks the symmetry of the surface and leads to the asymmetric growth. The temperature of RDE was found to greatly influence the formation of nanowires. By RDE at 750 °C, a high density of NiSi2 nanowires was formed with an average aspect ratio of 30.
    Self-assembled NiSi2 nanowires with a high-aspect ratio have been fabricated by combining the methods of RDE and nitride-mediated epitaxy (NME). Both types of epitaxial NiSi2 nanowires, which are parallel and twin related to the substrates, were formed with the length/width aspect ratios increased by a factor of 8 with the effect of NME. One type of nanowire was successfully grown with a high-aspect ratio despite the four-fold symmetric epitaxial relationship between NiSi2 and Si with very small mismatch. The use of NME method effectively diminished the flux of Ni atoms and allowed sufficient time for the strain to be released by means of shape transition during the island growth at elevated temperatures.
    Endotaxial growth of self-assembled α-FeSi2 nanowires on (100)Si has been achieved by combining RDE and NME. The length and the length/width aspect ratio of metallic α-FeSi2 nanowires could be increased more than 12 and 6 folds to 2 μm, and 200 respectively, with a narrow width of 5-10 nm after prolonged annealing. The adjustment capability is attributed to the diminished flux of Fe adatoms mediated by the Si3N4 barrier layer to allow more complete shape transition. The scheme represents a degree of control on the morphology of self-assembled epitaxial silicide NWs not achievable otherwise.
    Au-Ni alloy have been used as metal source of RDE to enhance the growth of self-assembled silicide nanowires. The rate of adatom rearrangement can be increased significantly by the formation of a fast diffusing path at the silicide/Si interface as a result of the low Au-Si eutectic point. The result demonstrated an essential role of the rearrangement of atoms in the process of formation of epitaxial silicide NWs.

    Contents I Abstract V Chapter 1 Introduction 1.1 Nanotechnology 1 1.1.1 From “Micro” to “Nano” 1 1.1.2 Self-Assembly 3 1.1.3 One-Dimensional (1D) Nanostuctures 4 1.2 Metal Silicides 5 1.2.1 Properties and Applications of Silicides 5 1.2.2 Epitaxial Silicides 12 1.3 Ni/Si System 14 1.4 Fe/Si System 17 1.5 Scope and Aim of the Thesis 20 Chapter 2 Experimental Procedures 2.1 Fabrication of Self-Assembled Epitaxial Silicide Nanowires21 2.1.1 Initial Wafer Cleaning 21 2.1.2 Amorphous Silicon Nitride Film Deposition 21 2.1.3 Thin Metal Film Deposition 22 2.2 Thermal annealing 23 2.2.1 In-Situ UHV Annealing 23 2.2.2 Diffusion Furnace Annealing 23 2.3 Selective Etching 23 2.4 Preparation of Samples for Transmission Electron Microscope Examination 24 2.4.1 Planview Specimen Preparation 24 2.4.2 Cross-Sectional Specimen Preparation 24 2.5 Transmission Electron Microscope Observation 25 2.6 Scanning Electron Microscope Observation 26 2.7 Energy Dispersion Spectrometer (EDS) Analysis 26 2.8 Resistivity measurements 26 Chapter 3 Self-Assembled Epitaxial NiSi2 Nanowires on Si(001) by Reactive Deposition Epitaxy 3.1 Motivation 27 3.2 Experimental Procedures 28 3.3 Results and Discussion 28 3.4 Summary and Conclusions 32 Chapter 4 Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001)Si 4.1 Motivation 33 4.2 Experimental Procedures 34 4.3 Results and Discussion 35 4.4 Summary and Conclusions 40 Chapter 5 Self-Assembled Endotaxial α-FeSi2 Nanowires with Length Tunability Mediated by a Thin Nitride Layer on (001)Si 5.1 Motivation 41 5.2 Experimental Procedures 42 5.3 Results and Discussion 42 5.4 Summary and Conclusions 46 Chapter 6 Enhanced Growth of Self-Assembled Epitaxial Silicide Nanowires on (001)Si with Au-Ni as Metal Source 6.1 Motivation 48 6.2 Experimental Procedures 49 6.3 Results and Discussion 49 6.4 Summary and Conclusions 52 Chapter 7 Summary and Conclusions 7.1 Self-Assembled Epitaxial NiSi2 Nanowires on Si(001) by Reactive Deposition Epitaxy 53 7.2 Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001)Si 53 7.3 Self-Assembled Endotaxial α-FeSi2 Nanowires with Length Tunability Mediated by a Thin Nitride Layer on (001)Si 53 7.4 Enhanced Growth of Self-Assembled Epitaxial Silicide Nanowires on (001)Si with Au-Ni as Metal Source 54 Chapter 8 Future Prospects 8.1 In-Situ Observations of growth of Self-Assembled Epitaxial Silicide NWs 55 8.2 Position of Self-Assembled Epitaxial Silicide NWs 55 8.3 Electrical characterization of Self-Assembled Epitaxial Silicide NWs 55 8.4 Self-assembled Silicide Nanowires with Alloying Source for RDE 56 References 57 List of Tables 78 Tables 79 Figure Captions 83 Figures 87 Publications List 111

    Chapter 1
    1.1 C. M. Lieber, “One-Dimensional Nanostructures: Chemistry, Physics & Applications,” Solid State Commun. 107, 607-616 (1998)
    1.2 M. Wilson, K. K. G. Smith, M. Simmons and B. Raguse, “Nanotechnology Basic Science Emerging Technologies,” CRC, New York (2002)
    1.3 J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001).
    1.4 C. M. Lieber, “The Incredible Shrinking Circuit,” Sci. Am. 285, 58-65 (2001).
    1.5 V. Balzani, A. Credi, and M. Venturi, “The Bottom-up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 8, 5524-5532 (2002).
    1.6 K. E. Drexler, “Engines of Creation, the Coming Era of Nanotechnology,” Anchor Press, New York (1986).
    1.7 K. E. Drexler, “Machine-Phase Nanotechnology,” Sci. Am. 285, 74-75 (2001).
    1.8 G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295, 2418-2421 (2002)
    1.9 C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices,” Nature 408, 541-548 (2000).
    1.10 C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, “A Catenate-Based Solid State Electronically Reconfigurable Switch,” Science 289, 1172-1175 (2000).
    1.11 M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular Random Access Memory Cell,” Appl. Phys. Lett. 78, 3735-3737 (2001).
    1.12 A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
    1.13 D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature 389, 699-701 (1997).
    1.14 M. H. Devoret and R. J. Schoelkopf, “Amplifying Quantum Signals with the Single-Electron Transistor,” Nature 406, 1039-1047 (2000).
    1.15 S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 354, 56-58 (1991).
    1.16 C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Phys. Today 52, 22-28 (1999).
    1.17 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science 281, 973-975 (1998).
    1.18 Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science 285, 1719-1722 (1999).
    1.19 J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    1.20 Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    1.21 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science 294, 1313-1317 (2001).
    1.22 W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods through a Carbon Nanotube-Confined Reaction,” Science 277, 1287-1289 (1997).
    1.23 J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods,” Science 292, 2060-2063 (2001).
    1.24 W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15, 526-529 (2003).
    1.25 P. G. Collins and P. Avouris, “Nanotubes for Electronics,” Sci. Am. 283, 62-69 (2000).
    1.26 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature 415, 617-620 (2002).
    1.27 H. Moissan, “The Electric Furnace,” (English transl. by A. de Mouilpied) Edward Arnold, London, 1904.
    1.28 R.Wehrmann, in ”High-Temperature Materials and Technology,” (I. E. Campbell and E. M. Sherwood, eds.) Wiley, New York, 1967, p.399.
    1.29 B. N. Padnos, “Integrated Silicon Device Technology,” Vol. X. Chemical/ Metallurgical Properties of Silicon, Research Triangle Inst., North Carolina, 1965.
    1.30 M. P. Lepselter and J. M. Andrews, in “Ohmic Contacts to Semiconductors,” (B. Schwartz, ed.) Electrochem. Soc., Princeton, New Jersey, 1969, p.159.
    1.31 K. N. Tu and J. W. Mayer in “Thin Films-Interdiffusion and Reactions,” (J. M. Poate, K. N. Mayer, ed.) Wiley, New York, 1978, p.359.
    1.32 D. M. Brown, W. E. Engelar, M. Garfinkel, and P. V. Gray, “Refractory Metal Silicon Device Technology,” Solid Stste Electron. 11, 1105-1112 (1968)
    1.33 S. P. Murarka, “Interaction in Metallization Systems for Integrated Circuits,” J. Vac. Sci. Techno. B2, 693-706 (1984).
    1.34 M. A. Nicolet, “Diffusion Barriers in Thin Films,” Thin Solid Films, 52, 415-443 (1978).
    1.35 P. S. Ho, “General Aspects of Barrier Layers for Very Large Scale Integration Applications,” Thin Solid Films, 96, 301-316 (1982).
    1.36 H. H. Hosak, “Electrical and Features of Platinum Silicide-Aluminum Reaction,” J. Appl. Phys. 44, 3476-3485 (1973).
    1.37 H. Grinolds and G. Y. Robinson, “Study of Al/Pd2Si Contacts on Si ,” J. Vac. Sci. Technol. 14, 75-78 (1977).
    1.38 E. Hokelek and G. Y. Robinson, “Aluminum/Nickel Silicide Contacts on Silicon,” Thin Solid Films, 53, 135-140 (1978).
    1.39 G. J. Vangurp, J. L. C. Daams, A. V. Ostrom, L. S. M. Augustus, and Y. Tammings, “Aluminum-Silicide Reactions: Diffusion, Compound Formation, and Microstructure,” J. App. Phys. 50, 6915-6922 (1979).
    1.40 C. Y. Tine and M. Wittmer, “Investigation of the Al/TiSi/Si Contact System,” J. Appl. Phys. 54, 937-943 (1983).
    1.41 J. A. Cunningham, P. R. Fuller, and C. T. Haywood, “Corrosion Resistance of Several Integrated-Circuit Metallization System,” IEEE Trans. Reliab. 19, 182-187 (1970).
    1.42 C. Y. Ting and M. Wittmer, “The Use of Titanium-Based Contact Barrier Layers in Silicon Technology,” Thin Solid Films, 96, 327-345 (1982).
    1.43 K. N. Tu, “Shallow and Parallel Silicide Contacts,” J. Vac. Sci. Technol. 19, 766-777 (1981).
    1.44 P. S. Ho, “Basic Problems in Interconnect Metallization for VLSI Applications,” Proc. ROC IEDMS, Edited by L. J. Chen, (Hsinchu, ROC, 1984), p.471.
    1.45 A. Y. C. Yu, “Electron Tunneling and Contact Resistance of Metal Silicon Contact Barriers,” Solid-State Electron. 13, 239-247 (1970).
    1.46 S. P. Murarka, “Refractory Silicides for Integrated Circuits,” J. Vac. Sci. Technol. 17, 775-792 (1980).
    1.47 H. J. Geipel, Jr. N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, “Composite Silicide Gate Electrodes-Interconnections for VLSI Device Technologies,” IEEE Trans. Electron Devices, ED-27, 1417-1424 (1980).
    1.48 T. P. Chow, A. J. Steckl, and R. T. Jerdonek, “Refractory MoSi2/Polysilicon Bulk CMOS Circuits,” IEEE Electron Devices Lett. EDL-3, 37-40 (1982).
    1.49 M. Fukumoto, A. Shinohara, S. Okada, and K, Kugimiya, New MoSi2/Thin Poly-Si Gate Process: “Technology without Dielectric Degradation of Gate Oxide,” IEEE Trans. Electron Devices, ED-31, 1432-1439 (1984).
    1.50 V. Q. Ho and H. M. Nauguib, “Characterization of Rapidly Annealed Mo-Polycide,” J. Vac. Sci. Technol. A3, 896-899 (1985).
    1.51 R. Portius, D. Dietrich, A. Hassner, T. Raschke, E. Wieser, and W. Wolke, “Formation of Stable MoSi2/Poly-Si Films by Rapid Thermal Annealing,” Phys. Stat. Sol. (a)100, 199-206 (1987).
    1.52 M.Y. Tsai, H. H. Chao, L. M. Ephrath, B. L. crowder, A. Craser, R. S. Bennett, C. J. Lucchese, and M. R. Wordman, “One-Micron Polycide (WSi2 on Poly-Si) MOSFET Technology,” J. Electronchem. Soc. 128, 2207-2214 (1981).
    1.53 C. W. Koburger, H. J. Geipel, M. Ishaq, and L. A. A. Nesbit, “Controlling Void Formation in WSi2 Polycides,” IEEE Electron Devices Lett. EDL-5, 166-168 (1984).
    1.54 A. K. Sinha, W. S. Lindenberger, D. B. Fraser, S. P. Murarka, and E. N. Fuls, “MOS Compatibility of High-Conductivity TaSi2/N+ Poly-Si Gates,” IEEE Trans. Electron Devices, ED-27, 1425-1430 (1980).
    1.55 D. L. Kwong, R. Kwor, and B. Y. Tsaur, “Composite TaSi2/N+ Poly-Si Formation by Rapid Thermal Annealing,” IEEE Electron Devices Lett. EDL-5, 133-135 (1984).
    1.56 S. P. Murarka and D. B. Fraser, “Thin Film Interaction between Titanium and Polycrystalline Silicon,” J. Appl. Phys. 51, 342-349 (1980).
    1.57 W. R. Hunter and A. F. Tasch. “Composite TaSi2/N+ Poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology,” IEEE Trans. Electron Devices, ED-29, 547-553 (1982).
    1.58 T. Yachi, “Formation of TaSi2/N+ Poly-Si Layer by Rapid Lamp Heating and its Application to MOS Devices,” IEEE Electron Devices Lett. EDL-5, 217-220 (1984).
    1.59 Y. Narita, S. Ohya, Y. Murao, S. K.anauchi, and M. Kikuchi, ”A High Speed 1-Mbit EPROM with a Ti-Silicide Date,” IEEE Trans. Electron Devices, ED-32, 498-501 (1985).
    1.60 A. N. Saxena and D. Pramanik, “VLSI Multilevel Metallization,” Solid State Technol. 27, Dec. 93-100 (1984).
    1.61 A. K. Sinha, “Refractory Metal Silicides for VLSI Applications,” J. Vac. Sci. Technol. 19, 778-785 (1981).
    1.62 H. Jshiwatu, T. Asano, and S. Furukawa, “Epitaxial Growth of Element Semiconductor Films onto Silicide/Si and Fluoride/Si Structure,” J. Vac. Sci. Technol. B1, 266-271 (1983).
    1.63 K. L. Wang and G. P. Li, “A Proposed High-Frequency High-Power Silicon-Silicide Multilayered Device,” IEEE Trans. Electron Device Lett. EDL-4, 444-446 (1983).
    1.64 R. T. Tung, A. F. J. Levi, and J. M. Jibson, “Control of a Natural Permeable CoSi2 Base Transistor,” Appl. Phys. Lett. 48. 635-637 (1986).
    1.65 F. A. D’Avitaya, “Si/CoSi2/Si Permeable Base Transistor Obtained by Silicon Molecular Beam Epitaxy over a CoSi2 Grating,” Electronics Lett. 22, 699-700 (1986).
    1.66 K. Ishibashi and S. Furukawa, “SPE-CoSi2 Submicron Lines by Lift-off Using Selective Reaction and Its Application to a Permeable-Base Transistor,” IEEE Trans. Electron Devices, ED-33, 322-327 (1986).
    1.67 K. Hikosaka, H. Ishiwara. and S. Furukawa, “Channeled Ion Implantation through Metallic Films,” J. Vac. Sci. Technol. 16, 1913-1916 (1979).
    1.68 T. R. Harrison, A. M. Johnson. P. K. Tien, and A. H. Dayem, “NiSi2-Si Infrared Schottky Photodetectors Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 41. 734-736 (1982).
    1.69 S. Saitoh, H. Ishiwara, T. Asano, and S. Furukawa, “Single Crystalline Silicide Formation,” Jpn. J. Appl. Phys. 20, 1649-1656 (1981).
    1.70 U. Koster. P. S. Ho, and J. E. Lewis, “Material Reaction in Al/Pd2Si/Si Junctions. I. Phase Stability,” J. Appl. Phys. 53, 7436-7444 (1982).
    1.71 R. T. Tung, J. M. Poate, J.C. Bean, S.M. Gibson, and D. C. Jacobson, “Epitaxial Silicides,” Thin Solid Films, 93, 77-90 (1982).
    1.72 R. T. Tung, “Schottky-Barrier Formation at Single-Crystal Metal-Semiconductor Interfaces,” Phys. Rev. Lett. 52, 461-464 (1984).
    1.73 T. Kawamura, D. Shinoda, and H. Muta, “Oriented Growth of the Interfacial PtSi Layer or between Pt and Si,” Appl. Phys. Lett. 11, 101-103 (1967).
    1.74 W. D. Buckley and S. C. Moss, “Structure and Electrical Characteristics of Epitaxial Palladium Silicide Contacts on Single Crystal Silicon and Diffused p-n Diodes,” Solid State Electron, 15, 1331-1337 (1972).
    1.75 G. J. V. Gurp and C. Langereis, “Cobalt Silicide Layers on Si. I. Structure and Growth,” J. Appl. Phys. 46, 4301-4307 (1975).
    1.76 H. C. Cheng, I. C. Wu, and L. J. Chen, “Growth of Single-Crystalline CoSi2 on (111) Si in Solid Phase Epitaxy Regime by a Non-Ultrahigh Vacuum Method,” Appl. Phys. Lett. 50, 174-176 (1987).
    1.77 C. S. Chang, C. W. Nieh, and L. J. Chen, “Partial Epitaxial Growth of HfSi2 Films Grown on Silicon,” J. Appl. Phys. 61, 2393-2395 (1987).
    1.78 J. J. Chu, L. J. Chen, and K. N. Tu, “Localized Epitaxial Growth of ReSi2 on (111) and (001) Silicon,” J. Appl. Phys. 62, 461-465 (1987).
    1.79 I. C. Wu, J. J. Chu, and L. J. Chen, “Localized Epitaxial Growth of TaSi2 on (111) and (001) Si by Rapid Thermal Annealing,” J. Appl. Phys. 62, 879-884 (1987).
    1.80 W. J. Chen and L. J. Chen, “Interfacial Reaction of Nickel Metal Thin Films on Bf2+ Implanted (001)Si,” J. Appl. Phys. 70, 2628-2633 (1991)
    1.81 C. Canali, G. Majni, G. Ottaviani, and G. Celotti, “Phase Diagrams and Metal-Rich Silicide Formation,” J. Appl. Phys. 50, 255-258 (1979).
    1.82 A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, “Concentration-Controlled Phase Selection of Silicide Formation during Reactive Deposition,” Appl. Phys. Lett. 74, 3137-3139 (1999).
    1.83 J. M. Gibson and J. L. Batstone, “In-situ Transmission Electron Microscopy of NiSi2 Formation by Molecular-Beam Epitaxy,” Surf. Sci. 208, 317-322 (1989).
    1.84 H. Von Kanel, N. Onda, H. Sirringhaus, E. Mullergubler, S. Goncalvesconto, and C. Schwarz, “Epitaxial Phase Transitions in the Iron Silicon System,” Appl. Surf. Sci. 70/71, 559-561 (1993).
    1.85 J. Desimoni, H. Bernas, M. Behar, X. W. Lin, S. Washburn, and Z. Lilientalweber, “Ion-Beam Synthesis of Cubic FeSi2,” Appl. Phys. Lett. 62, 306-308 (1993).
    1.86 J. Alvarez, J. J. Hinarejos, E. G. Michel, and R. Miranda, “Determination of the Fe/Si(111) Phase Diagram by Means of Photoelectron Spectroscopies,” Surf. Sci. 287/288, 490-494 (1993).
    1.87 N. E. Christensen, “Electronic-Structure of Beta-FeSi2,” Phys. Rev. B 42, 7148-7153 (1990).
    1.88 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, “Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition,” PO8B., 49 (1995).
    1.89 H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, S Uekusa, I. Aksenov, S. Kimura, A. Obara, and S. Uekusa, “Optical Absorption and Photoluminescence Studies of Beta-FeSi2 Prepared by Heavy Implantation of Fe+ Ions into Si,” J. Appl. Phys. 80, 5955-5962 (1996).
    1.90 H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, and S. Uekusa, “Effect of Multiple Step Annealing on the Formation of Semiconducting Beta-FeSi2 and Metallic Alpha-Fe2Si5 on Si(100) by Ion-Beam Synthesis,” Jpn. J. Appl. Phys. 36, 2802-2812 (1997).
    1.91 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proc. of 13th European Photovoltaic Solar Energy Conf. 1326 (1995).
    1.92 M. Riffel, E. Gross, and U. Stohrer, “Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements,” J. Mater. Sci. Mater. Electron 6, 182-185 (1995).
    1.93 R. Eppenga, “Ab Initio Band-Structure Calculation of the Semiconductor β-FeSi2,” J. Appl. Phys. 68, 3027-3029 (1990).
    1.94 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical Absorption Study of Ion Beam Synthesized Polycrystalline Semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995).
    1.95 C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic Properties of Semiconducting FeSi2 Films,” J. Appl. Phys. 68, 1726-1734 (1990).
    1.96 M. C. Bost and J. E. Mahan, “A Clarification of the Index of Refraction of Beta-Iron Disilicide,” J. Appl. Phys. 64, 2034-2037 (1988).
    1.97 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-Type Beta FeSi2 Single Crystals,” Phys. Rev. B 52, 20-23 (1995).
    1.98 T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate Low-Loss Single Mode Fiber at 1.55 μm,” Electron. Lett. 15, 106-109 (1979).
    1.99 J. Derrien, J. Chevrier, V. Le Thanh, and J. E. Mahan, “Semiconducting Silicide Silicon Heterostructures: Growth, Properties, and Applications,” Appl. Surf. Sci. 56-58, 382-393 (1992).
    1.100 H. Lange, “Electronic Properties of Semiconducting Silicides,” Phys. Stat. Sol. (b) 201, 3-66 (1997).
    1.101 E. Grob, M. Riffel, and U. Stohrer, “Thermoelectric Generators Made of FeSi2 and HMS - Fabrication and Measurement,” J. Mater. Res. 10, 34-40 (1995).
    1.102 H. Katsumata, H. L. Shen, N. Kobayashi, Y. Makita, M. Hasegawa, H. Shibata, S. Kimura, A. Obara, and S. Uekusa, Proc. 9th International Conference on Ion Beam Modification of Materials, Elserier Science, New York, 943 (1996).
    1.103 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proceedings of 13th European Photovoltaic Solar Energy Conference, 1326 (1995).
    1.104 D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5 μm,” Nature 387, 686-688 (1997).
    1.105 T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, “Room Temperature 1.6 μm Electroluminescence from a Si-based Light Emitting Diode with Beta-FeSi2 Active Region,” Jpn. J. Appl. Phys. 39, 1013-1015 (2000).
    1.106 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001).
    1.107 P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science 292, 706-709 (2001).
    1.108 S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-Temperature Transistor Based on a Single Carbon Nanotube,” Nature 393, 49-52 (1998).
    1.109 C. Preinesberger, S. Vandre, T. Kalka, and M. Dahne-Prietsch, “Formation of Dysprosium Silicide Wires on Si(001),” J. Phys. D 31, L43 (1998).

    Chapter 2
    2.1 T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross-Section of Large Scale Integrated Circuits,” IEEE Trans. Electron. Devices ED-23, 531-536 (1976).

    Chapter 3
    3.1 C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol. A, 21, S207-S215 (2003).
    3.2 Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science 291, 630-633 (2001).
    3.3 M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. Yoon, M. S. C. Mazzoni, H . J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed Nanotube Junctions,” Science 288, 494-497 (2000).
    3.4 M. T. Bjork, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
    3.5 L. J. Chen, “Metal silicides: An Integral Part of Microelectronics,” JOM 57 (9), 24-30 (2005).
    3.6 Y. Wu, J. Xiang, C. Yang, W. Lu, and C.M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductors Nanowires Heterostructures,” Nature 430, 61-65 (2004).
    3.7 J. F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J. Smith, “Signatures of Quantum Transport in Self-Assembled Epitaxial Nickel Silicide Nanowires,” Appl. Phys. Lett. 85, 281-283 (2004).
    3.8 Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribeiro, and Y. A. Chang, “Self-Assembled Growth of Epitaxial Erbium Disilicide Nanowires on Silicon (001),” Appl. Phys. Lett. 76, 4004-4006 (2000).
    3.9 J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge, Phys. Rev. B, “Self-Assembled Rare-Earth Silicide Nanowires on Si(001),” 63, 233305 (2001).
    3.10 Y. Chen, D. A. A. Ohlberg, R. S. Williams, “ Nanowires of Four Epitaxial Hexagonal Silicides Grown on Si(001),” J. Appl. Phys. 91, 3213-3218 (2002).
    3.11 M. Stevens, Z. He, D.J. Smith, and P. A. Bennett, “Structure and Orientation of Epitaxial Titanium Silicide Nanowires Determined by Electron Microdiffraction,” J. Appl. Phys. 93, 5670-5674 (2003).
    3.12 W. C. Yang, H. Ade, and R. J. Nemanich, “Shape Stability of TiSi2 Islands on Si(111),” J. Appl. Phys. 95, 1572-1576 (2004).
    3.13 S. H. Brongersma, M. R. Castell, D. D. Perovic, and M. Zinke-Allmang, “Stress Induced Shape Transition of CoSi2 Clusters on Si(100),” Phys. Rev. Lett. 80, 3795-3798 (1998).
    3.14 J. D. Carter, G. Cheng, and T. Guo, “Growth of Self-Aligned Crystalline Cobalt Silicide Nanostructures from Co Nanoparticles,” J. Phys. Chem. B, 108, 6901-6904 (2004).
    3.15 Z. He, D. J. Smith, and P. A. Bennett, “Endotaxial Silicide Nanowires,” Phys. Rev. Lett. 93, 256102 (2004).
    3.16 J. Tersoff and R. M. Tromp, “Shape Transition in Growth of Strained Islands: Spontaneous Formation of Quantum Wires,” Phys. Rev. Lett. 70, 2782-2785 (1993).
    3.17 D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, “Self-Limiting Growth of Strained Faceted Islands,” Phys. Rev. Lett. 80, 5156-5159 (1998).
    3.18 C. S. Chang, C. W. Nieh, and L. J. Chen, “Formation of Epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings,” Appl. Phys. Lett. 50, 259-261 (1987).
    3.19 J. Y. Yew, L. J. Chen, and K. Nakamura, “Epitaxial Growth of NiSi2 on (111)Si inside 0.1-0.6 μm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69, 999-1001 (1996).
    3.20 L. J. Chen and K. N. Tu, “Epitaxial Growth of Transition Metal Silicides on Silicon,” Mater. Sci. Rep. 6 53-140 (1991).
    3.21 J. M. Gibson, J. L. Bastone, R. T. Tung, and F. C. Unterwald, “Origin of A-type and B-type NiSi2 Determined by In-situ Transmission Electron Microscopy and Diffraction during Growth,” Phys. Rev. Lett. 60, 1158-1161 (1988).
    3.22 P. A. Bennett, B. Ashcroft, Z. He, and R. M. Tromp, “Growth Dynamics of Titanium Silicide Nanowires Observed with Low-Energy Electron Microscopy,” J. Vac. Sci. Technol. B, 20, 2500-2504 (2002).

    Chapter 4
    4.1 R. K. K. Chong, M. Yeadon, W. K. Choi, E. A. Stach, and C. B. Boothroyd, “Nitride-Mediated Epitaxy of CoSi2 on Si(001),” Appl. Phys. Lett. 82, 1833-1835 (2003).
    4.2 R. T. Tung, “Oxide Mediated Epitaxy of CoSi2 on Silicon,” Appl. Phys. Lett. 68, 3461-3463 (1996).
    4.3 K. C. R. Chiu, J. M. Poate, J. E. Rowe, T. T. Sheng, and A. G. Gullis, “Interface and Surface Structures of Epitaxial NiSi2 Films,” Appl. Phys. Lett. 38, 988-990 (1981).
    4.4 F. Edelman, E. Y. Gutmanai, A. Katz, and R. Brener, “Formation of Nickel Silicides in the Ni/Si3N4/Si System during Rapid Thermal Annealing,” Appl. Phys. Lett. 53, 1186-1188 (1988).
    4.5 R. N. Ghoshtagore, “Diffusion of Nickel in Amorphous Silicon Dioxide and Silicon Nitride Films,” J. Appl. Phys. 40, 4374-4376 (1969).
    4.6 L. Aballe, L. Gregoratti, A. Barinov, M. Kiskinova, T. Clausen, S. Gangopadhyay, and J. Falta, “Interfacial Interactions at Au/Si3N4/Si(111) Structures with Ultrathin Nitride Films,” Appl. Phys. Lett. 84, 5031-5033 (2004).
    4.7 A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, “Concentration-Controlled Phase Selection of Silicide Formation during Reactive Deposition,” Appl. Phys. Lett. 74, 3137-3139 (1999).
    4.8 C. W. Lim, C.-S. Shin, D. Gall, J. M. Zuo, I. Petrov, and J. E. Greene, “Growth of CoSi2 on Si(001) by Reactive Deposition Epitaxy,” J. Appl. Phys. 97, 044909-044914 (2005).
    4.9 J. H. Lee, “Wirelike Growth of Self-Assembled Hafnium Silicides: Oxide Mediated Epitaxy,” Appl. Surf. Sci. 239, 268-272 (2005).
    4.10 H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa, and P. A. Bennett, “In Situ Resistance Measurements of Epitaxial Cobalt Silicide Nanowires on Si(110),” Appl. Phys. Lett. 86, 233108 1-3 (2005).
    4.11 L. Zhigang, L. Shibing, W. Congshun, L. Ming, W. Wengang, H. Yilong, and Z. Xinwei, “Resistivity Measurements of Self-Assembled Epitaxially Grown Erbium Silicide Nanowires,” J. Phys. D 39, 2839-2842 (2006).
    4.12 E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon,” Mater. Sci. Eng. RI6, 43-96 (1996).
    4.13 E. Jentzsch, R. Schad, S. Heun, and M. Huzler, “Magnetoconductivity of Thin Epitaxial NiSi2 Films in UHV at Low Temperatures,” Phys. Rev. B 44, 8984-8989 (1991).
    4.14 N. M. Zimmerman, J. A. Liddle, A. E. White, and K. T. Short, “Transport in Submicrometer Buried Mesotaxial Cobalt Silicide Wires,” Appl. Phys. Lett. 62, 387-389 (1993).

    Chapter 5
    5.1 M. Tanaka, F. Chu, M. Shimojo, M. Takeguchi, K. Mitsuishi, and K. Furuya, “Position and Size-Controlled Fabrication of Iron Silicide Nanorods by Electron-Beam-Induced Deposition Using an Ultrahigh-Vacuum Transmission Electron Microscope,” Appl. Phys. Lett. 86, 183104 (2005).
    5.2 S. Liang, R. Islam, D. J. Smith, P. A. Bennett, J. R. O'Brien, and B. Taylor, “Magnetic Iron Silicide Nanowires on Si(110),” Appl. Phys. Lett. 88, 113111 (2006).
    5.3 M. V. Ivanchenko, E. A. Borisenko, V. G. Kotlyar, O. A. Utas, A. V. Zotov, A. A. Saranin, V. V. Ustinov, N. I. Solin, L. N. Romashev, and V. G. Lifshits, “Comparative STM Study of SPE Growth of FeSi2 Nanodots on Si(111)7 x 7 and Si(111)(√3x√3)-R30 Degrees-B Surfaces,” Surf. Sci. 600, 2623-2628 (2006).
    5.4 K. Yamamoto, H. Kohno, S. Takeda, and S. Ichikawa, “Fabrication of Iron Silicide Nanowires from Nanowire Templates,” Appl. Phys. Lett. 89, 083107 (2006).
    5.5 J. L. McChesney, A. Kirakosian, R. Bennewitz, J. N. Crainl, J.-L. Lin, and F. J. Himpsel, “Gd Disilicide Nanowires Attached to Si(111) Steps,” Nanotechnology 13, 545-548 (2002).
    5.6 B. Z. Liu and J. Nogami, “Growth of Parallel Rare-Earth Silicide Nanowire Arrays on Vicinal Si(001),” Nanotechnology 14, 873-877 (2003).
    5.7 H. C. Cheng, T. R. Yew, and L. J. Chen, “Interfacial Reactions of Iron Thin Films on Silicon,” J. Appl. Phys. 57, 5246-5250 (1985).
    5.8 X. W. Lin, M. Behar, J. Desimoni, H. Bernas, J. Washburn, and Z. L. Weber, “Low-Temperature Ion-Induced Epitaxial Growth of -FeSi2 and cubic FeSi2 in Si,” Appl. Phys. Lett. 63, 105-107 (1993).
    5.9 G. Molnar, L. Dozsa, G. Peto, Z. Vertesy, A. A. Koos, Z. E. Horvath, and E. Zsoldos, “Thickness Dependent Aggregation of Fe-Silicide Islands on Si Substrate,” Thin Solid Films 459, 48-52 (2004).
    5.10 B. Egert and G. Panzner, “Bonding State of Silicon Segregated to α-Iron Surfaces and on Iron Silicide Surfaces Studied by Electron Spectroscopy,” Phys. Rev. B 29, 2091-2101 (1984).

    Chapter 6
    6.1 S. Y. Chen and L. J. Chen, “Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001)Si,” Appl. Phys. Lett. 87, 253111 (2005).
    6.2 S. Y. Chen, H. C. Chen, and L. J. Chen, “Self-Assembled Endotaxial α-FeSi2 Nanowires with Length Tunability Mediated by a Thin Nitride Layer on (001)Si,” Appl. Phys. Lett. 88, 193114 (2006).

    6.3 L. S. Hung, L. R. Zheng, and J. W. Mayer, “Influence of Au as an Impurity in Ni-Silicide Growth,” J. Appl. Phys. 54, 792-795 (1983).
    6.4 D. Mangelinck, A. Correia, P. Gas, A. Grob, and B. Pichaud, “Gold Clusters Precipitation at the Interface between Ni(Au) Silicides and (111) Silicon,” J. Appl. Phys. 78, 1638-1642 (1995).
    6.5 D. Mangelinck, P. Gas, A. Grob, B. Pichaud, and O. Thomas, “Formation of Ni Silicide from Ni(Au) Films on (111)Si,” J. Appl. Phys. 79, 4078-4086 (1996).
    6.6 W. B. Pearson, in “Handbook of Lattice Spacing and Structures of Metals,” Pergamon, London, 1967, Vol. 2, p. 677.
    6.7 E. I. Alessandrini, D. R. Campbell, and K. N. Tu, “Surface Reaction on MOS Structures,” J. Appl. Phys. 45, 4888-4893 (1974).
    6.8 D. V. Morgan, M. J. Howes, and C. J. Madams, “Low Temperature Migration of Gold through Thin Films of Silicon Monoxide,” J. Electrochem. Soc. 123, 295-299 (1976).
    6.9 T. Searle in “Properties of Amorphous Silicon and Its Alloys,” edited by T. Searle, INSPEC, London, 1998.

    Chapter 8
    8.1 C P. Collier, G. Mattersteig, E. W. Wong, Yi Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, “Catenane-Based Solid State Electronically Reconfigurable Switch,” Science, 289, 1172-1175 (2000).
    8.2 T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung, and C. M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing,” Science, 289, 94-97 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE