簡易檢索 / 詳目顯示

研究生: 顧懷三
Kou, Hai-San
論文名稱: Synthesis and Surface Modification of Magnetic Fe3O4 Nanoparticles as MRI Contrast Agents
四氧化三鐵奈米粒子的合成與其表面改質作為核磁共振顯影劑之應用
指導教授: 周立人
Chou, Li-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 61
中文關鍵詞: 四氧化三鐵奈米粒子核磁共振超順磁性
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核磁共振造影技術,為非侵入性影像學檢查是近年來醫學界的重大發明,而具有超順磁特性鐵氧化物為基礎的奈米粒子,例如四氧化三鐵,更是已被廣泛地用於信號增強之對比顯影劑。
    本論文成功地藉由化學還原法合成出粒徑均勻之超順磁性四氧化三鐵奈米粒子,並且利用相轉換的程序使奈米粒子從油溶性轉為水溶性。同時探討在油包水微乳液系統中,水的含量對於前驅物正矽酸乙酯(TEOS)轉變為二氧化矽殼層的影響,同時比較不同其顯影能力及飽和磁化量的變化。
    最後,利用動態光散射及核磁共振儀量測水溶性四氧化三鐵奈米粒子之水合粒徑及遲緩率,並與具有相同粒徑的臨床顯影劑比較,顯示其有更好遲緩率表現。


    Content II Acknowledgement IV Abstract V 摘要 VI Chapter 1 Introduction 1 1-1 Introduction of Nanoparticles and Nanoparticles in Biomedical Applications 1 1-2 Size Effects of Magnetic Nanoparticles and Superparamagnetism 3 1-3 Magnetic Resonance Imaging (MRI) and Magnetic Nanoparticles of Fe3O4 6 1-4 Synthesis of Iron Oxide Nanoparticles 13 1-4-1 Coprecipitation [19][20] 13 1-5 Surface Modification 15 1-5-1 Oil-water Phases Transferring 15 1-5-2 Water-in-oil (W/O) Microemulsion 16 1-6 Motivation and Research Direction 19 Chapter 2 Experimental Procedures 20 2-1 Synthesis of Fe3O4 nanoparticles 20 2-2 Surface modification of Fe3O4 nanoparticles 22 2-3 Analytical Characterization Equipment 23 2-3-1 X-Ray Diffraction(XRD) Analysis 23 2-3-2 Transmission Electron Microscope (TEM) 23 2-3-3 X-Ray Photoelectron Spectrum ( XPS ) 23 2-3-4 Vibrating-sample Magnetometer (VSM) 24 2-3-5 Dynamic Light Scattering (DLS) Particles Sizes Distribution Analyzer 26 2-3-6 T2-weighted Magnetic Resonance Imaging 28 2-3-7 Nuclear Magnetic Resonance (NMR) 28 Chapter 3 Results and Discussions 29 3-1 Organic-phase Fe3O4 Nanoparticles 29 3-1-1 XRD Analysis 29 3-1-2 TEM and HRTEM Analysis 31 3-1-3 XPS Analysis 35 3-1-4 VSM Measurements 37 3-2 Water-soluble Fe3O4 Nanoparticles 39 3-2-1 TEM Analysis 39 3-2-2 XPS Analysis 41 3-2-3 Synthesis of Silica Shell by W/O Microemulsion Method 43 3-2-4 The Procedure of the Modified Reaction of TEOS with Fe3O4 Nanoparticles 45 3-2-5 T2-weighted images measurement 47 3-2-6 VSM Measurement 49 3-2-7 DLS and Relaxivity (R2) Measurement 51 Chapter 4 Summary and Conclusions 54 Reference 56

    [1] C. Murphy, “Materials science: Nanocubes and nanoboxes, ” Science 298 (2002)
    [2] G. Philip, A. Collins, B.Hiroshi, T. Andreas, R. Smalley, “Nanotube Nanodevice,” Science 278 (1997)
    [3] Y. Xia, P. Yang, Y. Sun, Y.Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15, 353(2003)
    [4] W. Göpel, “Bioelectronics and nanotechnologies,” Biosens.
    Bioelectronics 13, 723 (1998)
    [5] L. Mazzola, “Commercializing nanotechnology,” Nature Biotechnology 1137-1143 (2003)
    [6] R. Paull, J. Wolfe, P. Hebert, M. Sinkula, “Investing in nanotechnology,” Nature Biotechnology 1134-1147 (2003)
    [7] W. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, C. Williams, R. Boudreau, M. Le Gros, C. Larabell , A. Alivisatos , “Biological applications of colloidal nanocrystals,” Nanotechnology R15-R27 (2003)
    [8] Q. Pankhurst, J. Connolly, S. Jones , J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J Phys D: Appl Phys R167-R181 (2003)
    [9] Y. Zhang, N. Kohler, M. Zhang, “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake,” Biomaterials 1553–1561 (2002)
    [10] D. Jales, “Introduction to Magnetism and Magetnic Materials,” CRC Press, Boca Raton, FL (1998)
    [11] J. Cheon, N. Kang, S. Lee, J. Yoon, S. Oh, “Shape evolution of singlecrystalline iron oxide nanocrystals,” J. Am. Chem. Soc. 126, 1950–1951 (2004)
    [12] D. Leslie-Pelecky, R. Rieke, “Magnetic properties of nanostructured materials,” Chem. Mater. 8, 1770–1783 (1996)
    [13] Y. Jun, J. Seo, J. Cheon, “Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences,” Accounts of Chemical Research 179-189 (2008)
    [14] D. Mitchell, M. Cohen, “MRI Principles.” Saunders, Philadelphia, PA (2004)
    [15] M. Brown, R. Semelka, “MRI: Basic Principles and Applications,” Wiley-Liss, Hoboken, NJ (2003)
    [16] Y. Jun, J. Lee, J. Cheon “Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging,” 47, 5122-5135 (2008 )
    [17] R. McCurrie, “Ferromagnetic Materials: Structure and Properties,”
    Academic Press, San Diego (1994)
    [18] R. Cornell, U. Schwertmann, “The iron oxides: structure, properties, reactions, occurrences and uses,” (2003)
    [19] T. Sugimoto, E. Matijevic, “Formation of uniform spherical magnetite particles by crystallization form ferrous hydroxide gels,” J.Colloid Interface Sci, 74, 227 (1980)
    [20] Y. Kang, J. Rabolt, P. Stroeve, “Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles,” Chem Mater. 8, 2209-2211 (1996)
    [21] K. Woo, J. Hong, J. Ahn, “Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine,” J. Magn. Magn. Mater. 293, 177 (2005)
    [22] S. Sun, H. Zeng, D. Robinson, S. Raoux, P. Rice, S. Wang, G. Li, “Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles,” Journal of the American Chemical Society 126, 273-279 (2004)
    [23] Y. Jun, Y. Huh, J. Choi, J. Lee, H. Song, S. Kim, S. Yoon, K. Kim, J. Shin, J. Suh, J.Cheon, “Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging,” J. Am. Chem. Soc. 127, 5732-5733(2005)
    [24] J. Lee, Y. Huh,Y. Jun, J. Seo, J. Jang,H. Song, S. Kim, E. Cho, H. Yoon, J. Suh, J. Cheon, “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat. Med. 13, 95-99 (2007)
    [25] J. Schulman, J. Friend, Z. Koll, “Reversible adsorption of proteins at the oil water interface .1. preferential adsorption of proteins at charged oil water interfaces,” 115, 67 (1946)
    [26] C. Chiang, M. Hsu, L. Lai, “Controlled of nucleation and growth of gold nanoparticles in AOT/Span 80/isooctane mixed reverse micelles,” Journal of Solid State Chemistry 177, 3891-3895 (2004)
    [27] M. Bonini, A. Wiedenmann, P. Baglioni, “Synthesis and characterization of surfactant and silica-coated cobalt ferrite nanoparticles,” Physica A 339, 86 (2004)
    [28] D. Bae, K. Han, J. Adair, “Synthesis of platinum/silica nanocomposite particles by reverse micelle and sol-gel processing,” J. Am. Ceram. Soc. 85, 1321 (2002)
    [29] T. Li, J. Moon, A. Morrone, J. Mecholsky, D. Talham, J. Adair, “Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique,” Langmuir 15, 4328 (1999)
    [30] S. Moulik, B. Paul “Structure, dynamics and transport properties of Microemulsions,” Adv. Colloid Interface Sci. 78, 95 (1998)
    [31] R. Pecora, “Dynamic Light Scattering-Applications of Photon Correlation Specroscopy Plenum Press ,” New York (1985)
    [32] S. Alibeigi, M. Vaezi “Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+:Fe3+,” 1591-1596 (2008)
    [33] X. Teng, D. Black, N. Watkins, Y. Gao, H. Yang “Platinum-maghemite core-shell nanoparticles using a sequential synthesis,” Nano Letters 261-264 (2003 )
    [34] Q. Guo, X. Teng, S. Rahman, H. Yang, “Patterned Langmuir-Blodgett films of mondisperse nanoparticles of iron oxide using soft lithography,” J. Am. Chem. Soc.125, 630-631 (2003)
    [35] M. Darbandi, L. Weigang, J. Fang, T. Nann “Silica Encapsulation of Hydrophobically Ligated PbSe Nanocrystals,” 4371-4375 (2006)
    [36] D. Lee, F. Mikulec, J. Pelaez, B. Koo, B. Korgel “Synthesis and Magnetic Properties of Silica-Coated FePt Nanocrystals,” J. Phys. Chem. B 110, 11160-11166 (2006)
    [37] F. Chen, Q. Gao, J. Ni “The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core–shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery,” Nanotechnology 19, 165103 (2008)
    [38] M. Ming, Y. Zhang, W. Yu, H. Shen, H. Zhang, N. Gu “Preparation and characterization of magnetite nanoparticles
    coated by amino silane,” Colloids and Surfaces A: Physicochem 212, 219-226 (2003)
    [39] Y. Wang, S. Hussain, G. Krestin “Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging,” European Radiology 11, 2319-2331 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE