研究生: |
汪碧娟 Wang, Bi Juan |
---|---|
論文名稱: |
降低KDM4C基因表現可抑制攝護腺癌細胞之生長、移動與侵襲 Knockdown of KDM4C suppresses the proliferation, migration, and invation of prostate cancer cells |
指導教授: |
楊孝德
Yang, Shiaw Der 褚志斌 Chuu, Chih Pin |
口試委員: |
汪宏達
張中和 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 攝護腺癌 、KDM4C |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前列腺癌(Prostate cancer)在世界上最常見的癌症中排名第五。在台灣則是第六常見的癌症而且其發病率逐年增加。超過80%的前列腺癌患者死於骨轉移。賀爾蒙療法(Androgen ablation therapy)是治療轉移性前列腺癌的主要方法。然而,病患在接受賀爾蒙療法後1-3年會進展成去勢療法無效前列腺癌(castration - resistant prostate cancer,CRPC),復發後病患的中位存活期為1-2年且目前並無有效的治療方法。KDM4組蛋白去甲基酵素是調控外基因(epigenetics)的重要酵素。其中,KDM4C被發現是雄激素受體AR (androgen receptor)的共同調節受體(co-regulator),在CRPC中也發現KDM4C的表現量較高。雖然KDM4C在前列腺癌中所扮演的角色尚不明確,但在乳癌的研究中,KDM4C被認為是一個致癌基因(oncogene)。因此,本實驗利用siRNA抑制前列腺癌細胞LNCaP和C4-2B的KDM4C,結果發現前列腺癌細胞的增生、移動和侵襲能力明顯下降。進一步透過西方墨點法發現,當KDM4C表現量下降時,與EMT (epithelial-to-mesenchymal transition) 和Wnt signaling pathway相關的蛋白質表現量亦下降,像是Slug, Snail, vimentin and β-catenin。在異種移殖(Xenograft)原位模式(Orthotopic model)的動物實驗中也發現小鼠體內人類前列腺腫瘤的轉移能力受到抑制。我們的研究結果發現KDM4C能夠控制前列腺癌的發展與轉移,為KDM4C作為晚期前列腺癌治療標的提供了理論基礎。
1. Hellerstedt, B.A. and K.J. Pienta, The current state of hormonal therapy for prostate cancer. CA Cancer J Clin, 2002. 52(3): p. 154-79.
2. Chuu, C.P., et al., Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci, 2011. 18: p. 63.
3. Rotili, D. and A. Mai, Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer, 2011. 2(6): p. 663-79.
4. Nottke, A., M.P. Colaiacovo, and Y. Shi, Developmental roles of the histone lysine demethylases. Development, 2009. 136(6): p. 879-89.
5. Kouzarides, T., Chromatin modifications and their function. Cell, 2007. 128(4): p. 693-705.
6. Shi, Y., et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004. 119(7): p. 941-53.
7. Mosammaparast, N. and Y. Shi, Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases. Annual Review of Biochemistry, Vol 79, 2010. 79: p. 155-179.
8. Wissmann, M., et al., Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biology, 2007. 9(3): p. 347-U176.
9. Coffey, K., et al., The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Research, 2013. 41(8): p. 4433-4446.
10. Shin, S. and R. Janknecht, Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochemical and Biophysical Research Communications, 2007. 359(3): p. 742-746.
11. Suikki, H.E., et al., Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate, 2010. 70(8): p. 889-98.
12. Crea, F., et al., The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer, 2012. 11: p. 52.
13. Berry, W.L. and R. Janknecht, KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells. Cancer Research, 2013. 73(10): p. 2936-2942.
14. Liu, G., et al., Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 2009. 28(50): p. 4491-500.
15. Luo, W.B., et al., Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(49): p. E3367-E3376.
16. Yamamoto, S., et al., Histone demethylase KDM4C regulates sphere formation by mediating the cross talk between Wnt and Notch pathways in colonic cancer cells. Carcinogenesis, 2013. 34(10): p. 2380-2388.
17. Ponnaluri, V.K.C., et al., Identification of non-histone substrates for JMJD2A-C histone demethylases. Biochemical and Biophysical Research Communications, 2009. 390(2): p. 280-284.
18. Rui, L.X., et al., Cooperative Epigenetic Modulation by Cancer Amplicon Genes. Cancer Cell, 2010. 18(6): p. 590-605.
19. Horoszewicz, J.S., et al., The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37: p. 115-32.
20. Wu, H.C., et al., Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer, 1994. 57(3): p. 406-12.
21. Thalmann, G.N., et al., Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res, 1994. 54(10): p. 2577-81.
22. Mak, P., et al., ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 2010. 17(4): p. 319-32.
23. Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83.
24. Wang, Y.F., et al., The Role of Snail in EMT and Tumorigenesis. Current Cancer Drug Targets, 2013. 13(9): p. 963-972.
25. Wen, Y.C., et al., Snail as a potential marker for predicting the recurrence of prostate cancer in patients at stage T2 after radical prostatectomy. Clinica Chimica Acta, 2014. 431: p. 169-173.
26. Kypta, R.M. and J. Waxman, Wnt/beta-catenin signalling in prostate cancer. Nature Reviews Urology, 2012. 9(8): p. 418-428.
27. Dai, J., et al., Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res, 2008. 68(14): p. 5785-94.
28. Pearson, H.B., T.J. Phesse, and A.R. Clarke, K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res, 2009. 69(1): p. 94-101.