簡易檢索 / 詳目顯示

研究生: 汪碧娟
Wang, Bi Juan
論文名稱: 降低KDM4C基因表現可抑制攝護腺癌細胞之生長、移動與侵襲
Knockdown of KDM4C suppresses the proliferation, migration, and invation of prostate cancer cells
指導教授: 楊孝德
Yang, Shiaw Der
褚志斌
Chuu, Chih Pin
口試委員: 汪宏達
張中和
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 36
中文關鍵詞: 攝護腺癌KDM4C
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前列腺癌(Prostate cancer)在世界上最常見的癌症中排名第五。在台灣則是第六常見的癌症而且其發病率逐年增加。超過80%的前列腺癌患者死於骨轉移。賀爾蒙療法(Androgen ablation therapy)是治療轉移性前列腺癌的主要方法。然而,病患在接受賀爾蒙療法後1-3年會進展成去勢療法無效前列腺癌(castration - resistant prostate cancer,CRPC),復發後病患的中位存活期為1-2年且目前並無有效的治療方法。KDM4組蛋白去甲基酵素是調控外基因(epigenetics)的重要酵素。其中,KDM4C被發現是雄激素受體AR (androgen receptor)的共同調節受體(co-regulator),在CRPC中也發現KDM4C的表現量較高。雖然KDM4C在前列腺癌中所扮演的角色尚不明確,但在乳癌的研究中,KDM4C被認為是一個致癌基因(oncogene)。因此,本實驗利用siRNA抑制前列腺癌細胞LNCaP和C4-2B的KDM4C,結果發現前列腺癌細胞的增生、移動和侵襲能力明顯下降。進一步透過西方墨點法發現,當KDM4C表現量下降時,與EMT (epithelial-to-mesenchymal transition) 和Wnt signaling pathway相關的蛋白質表現量亦下降,像是Slug, Snail, vimentin and β-catenin。在異種移殖(Xenograft)原位模式(Orthotopic model)的動物實驗中也發現小鼠體內人類前列腺腫瘤的轉移能力受到抑制。我們的研究結果發現KDM4C能夠控制前列腺癌的發展與轉移,為KDM4C作為晚期前列腺癌治療標的提供了理論基礎。


    Contents Abstract ………………………………………………………………………………I 中文摘要…………………………………………………………………………….III 誌謝…. ………………………………………………………………………………IV Contents…………………………………………………………………………... ..V Figure contents…………………………………………………………………...… VII 1. Introduction …………………………………………………………….…………..1 2. Experimental aim and procedure………………………………………………… ...4 3. Materials and methods ……………………………………………………...……...5 3-1 Antibodies…………………………………………………………….……… .5 3-2 Cell culture ………………………………………………………………...… ..5 3-2-1 Cell lines……………………………………………………………….. .5 3-2-2 Cell subculture……………………………………………………………..6 3-2-3 Cell thawing ………………………………………………………...…… .6 3-2-4 Cell frozen ……………………………………………………….……… .7 3-3 siRNA transfection …………………………………………………..……… ...7 3-4 Proliferation assay………………….………………………………..……….. ..8 3-5 Transwell assay …………………………………………………………….…..9 3-6 Wound healing assay………………………………………………………….10 3-7 Western blot analysis …………………………………………………….… ..10 3-7-1 Protein extraction ……………………………………………...……… ...10 3-7-2 Protein concentration measurement……………………………..…… ...11 3-7-3 SDS- page electrophoresis ………………………………… ………… ...11 3-7-4 Western blotting ………………………………………………………...12 3-8 Orthotopic prostate cancer Tumorigenesis Model…………………………….13 3-9 Immunohistochemistry ……………………………………………………….14 3-10 Statistical Analysis…………………………………………………………...15 4. Results …………………………………………………………………………….16 4-1 Knockdown of KDM4C reduces prostate cancer cell proliferation…………...16 4-2 Knockdown of KDM4C suppresses the migration, invasion, and motility of prostate cancer cells……………………………………………………………17 4-3 Knockdown of KDM4C suppresses prostate tumor metastasis in nude mice……………………………………………………………………………18 4-4 Knockdown of KDM4C affected proteins involved in regulation of cancer cell metastasis……………………………………………………………………....19 5. Discussion ……………………………………………………………………… ..20 6. Figures……………………………………………… …………………………….23 7. References……………………………………………………………………….33 Figure Contents Figure 1. KDM4C mRNA and protein expression levels in different prostate cells…23 Figure 2. KDM4C gene expression levels in prostate cancer patient samples………24 Figure 3. Knockdown of KDM4C reduced the proliferation of LNCaP and C4-2B cells………………………………………………………………………...25 Figure 4. Knockdown of KDM4C inhibited the migration and invasion of LNCaP and C4-2B cells as measured by transwell assay……………………………...26 Figure 5.Knockdown of KDM4C inhibited the migration of C4-2B cells as determined by wound healing assay………………………………………27 Figure 6. The efficiency of siRNA knockdown of KDM4C in C4-2B cells…………28 Figure 7. Hematoxylin and Eosin (H&E) stain of orthotopic model mice tissue……29 Figure 8. Immunohistochemistry (IHC) staining of nude mice prostate……………..30 Figure 9. Immunohistochemistry (IHC) staining of nude mice intestine…………….31 Figure 10. Knockdown of KDM4C in C4-2B cells affected expression levels of EMT marker and β-catenin proteins………………………………………………………..32

    1. Hellerstedt, B.A. and K.J. Pienta, The current state of hormonal therapy for prostate cancer. CA Cancer J Clin, 2002. 52(3): p. 154-79.
    2. Chuu, C.P., et al., Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci, 2011. 18: p. 63.
    3. Rotili, D. and A. Mai, Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer, 2011. 2(6): p. 663-79.
    4. Nottke, A., M.P. Colaiacovo, and Y. Shi, Developmental roles of the histone lysine demethylases. Development, 2009. 136(6): p. 879-89.
    5. Kouzarides, T., Chromatin modifications and their function. Cell, 2007. 128(4): p. 693-705.
    6. Shi, Y., et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004. 119(7): p. 941-53.
    7. Mosammaparast, N. and Y. Shi, Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases. Annual Review of Biochemistry, Vol 79, 2010. 79: p. 155-179.
    8. Wissmann, M., et al., Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biology, 2007. 9(3): p. 347-U176.
    9. Coffey, K., et al., The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Research, 2013. 41(8): p. 4433-4446.
    10. Shin, S. and R. Janknecht, Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochemical and Biophysical Research Communications, 2007. 359(3): p. 742-746.
    11. Suikki, H.E., et al., Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate, 2010. 70(8): p. 889-98.
    12. Crea, F., et al., The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer, 2012. 11: p. 52.
    13. Berry, W.L. and R. Janknecht, KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells. Cancer Research, 2013. 73(10): p. 2936-2942.
    14. Liu, G., et al., Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 2009. 28(50): p. 4491-500.
    15. Luo, W.B., et al., Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(49): p. E3367-E3376.
    16. Yamamoto, S., et al., Histone demethylase KDM4C regulates sphere formation by mediating the cross talk between Wnt and Notch pathways in colonic cancer cells. Carcinogenesis, 2013. 34(10): p. 2380-2388.
    17. Ponnaluri, V.K.C., et al., Identification of non-histone substrates for JMJD2A-C histone demethylases. Biochemical and Biophysical Research Communications, 2009. 390(2): p. 280-284.
    18. Rui, L.X., et al., Cooperative Epigenetic Modulation by Cancer Amplicon Genes. Cancer Cell, 2010. 18(6): p. 590-605.
    19. Horoszewicz, J.S., et al., The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37: p. 115-32.
    20. Wu, H.C., et al., Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer, 1994. 57(3): p. 406-12.
    21. Thalmann, G.N., et al., Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res, 1994. 54(10): p. 2577-81.
    22. Mak, P., et al., ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 2010. 17(4): p. 319-32.
    23. Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83.
    24. Wang, Y.F., et al., The Role of Snail in EMT and Tumorigenesis. Current Cancer Drug Targets, 2013. 13(9): p. 963-972.
    25. Wen, Y.C., et al., Snail as a potential marker for predicting the recurrence of prostate cancer in patients at stage T2 after radical prostatectomy. Clinica Chimica Acta, 2014. 431: p. 169-173.
    26. Kypta, R.M. and J. Waxman, Wnt/beta-catenin signalling in prostate cancer. Nature Reviews Urology, 2012. 9(8): p. 418-428.
    27. Dai, J., et al., Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res, 2008. 68(14): p. 5785-94.
    28. Pearson, H.B., T.J. Phesse, and A.R. Clarke, K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res, 2009. 69(1): p. 94-101.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE