研究生: |
陳鼎昇 Chen, Ting-Sheng |
---|---|
論文名稱: |
機械手臂基於物理建模進行抑制振動控制應用於去毛邊路徑加工 Deburring Task of Robotic Manipulator with Vibration Resistance Control Based on Physical Model |
指導教授: |
張禎元
Chang, Jen-Yuan |
口試委員: |
宋震國
Sung, Cheng-Kuo 曹哲之 Tsao, Che-Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 振動抑制 、機械手臂加工 、機械手臂去毛邊任務 、機械手臂物理建模 |
外文關鍵詞: | deburring with robotic arm, robot manufacturing, robotic physical modeling, vibration resistance |
相關次數: | 點閱:5 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的快速發展,機械手臂的應用已越來越成熟,而在加工方
面更是可以取代傳統加工機台或是需要手工人力的作業,現今之機械手
臂擁有很好重複精度和足夠之精確度來應用於自動化產業中,如自動化
中的上下料、機械手臂自動焊接、噴漆…等等。
而在多數機械手臂工業加工應用中,手臂工具末端於加工路徑中所
產生的誤差與振動容易導致整體加工精度和工件表面粗糙度的表現不
佳,為避免上述情形的發生,本研究提出一種以物理分析進行振動預測
並進行改善控制的方式來降低其振動所造成的影響,於本研究中最後將
以金屬工件去毛邊任務之情境來呈現出本文在抑振控制上之研究。
相較於一般市售之機械手臂控制,本研究將著重於振動模型,齒輪
箱模型之分析與應用基因演算法輔助物理模型的建立,最後達成單純以
上層控制命令補償的方式來進行振動抑制的目的,此做法不僅在最終實
際應用時不需外加額外之感測器、亦不用直接改變原先機構,故在對於
市售一般機械手臂的應用上可以降低開發之成本,並且提升機械手臂應
用於路徑加工之表現。
The overwhelming manufacturing process with robotic arm has replaced
human labors in handling and manufacturing work-pieces in factories. In these years, higher accuracy and repeatability are required for robotic manipulators to perform processes such as welding, deburring and grinding in factories. In these path-following processes, the manipulator’s end-effector often encounter position error caused by its vibrating structures. Therefore, the quality of machining accuracy and surface roughness becomes unstable and unsatisfied. For the purpose of avoiding the vibrations while the robotic manipulator is working, this study aims to design a feedback control strategy to reduce vibrations which is divided into two parts, namely (1) dynamic
modeling the robot arm by applying modified mass-spring-damper model to
each joints and links of the robot arm, and (2) realizing the control of the robot arm’s vibration resistance with predicated dynamics to compensate for the undesired dynamics, respectively. Through the proposed model, the response of each joints in different postures and different payloads applied at the end effector can be fully analyzed and the vibrations can be predicted and compensated.
The realization method of this study can promote the performance of the
robotic manipulator without adding extra sensors or changing the original mechanism structure.
1] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. wiley New York, 2006.
[2] R. Featherstone and D. Orin, "Robot dynamics: equations and
algorithms," in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), 2000, vol. 1, pp. 826-834: IEEE.
[3] K. P. Hawkins, "Analytic inverse kinematics for the universal robots ur-
5/ur-10 arms," Georgia Institute of Technology2013.
[4] P. M. Kebria, S. Al-Wais, H. Abdi, and S. Nahavandi, "Kinematic and
dynamic modelling of UR5 manipulator," in 2016 IEEE international
conference on systems, man, and cybernetics (SMC), 2016, pp. 004229-
004234: IEEE.
[5] W. Bartelmus, "Gearbox dynamic modelling," Journal of Theoretical and
Applied Mechanics, vol. 39, pp. 989-999, 2001.
[6] J. Zhou, W. Sun, and Q. Tao, "Gearbox low-noise design method based
on panel acoustic contribution," Mathematical Problems in Engineering,
vol. 2014, 2014.
[7] KISSsoft, "KISSsoft Software."
[8] RomaxTech, "RomaxDESIGNER."
[9] W. R. Finley, M. M. Hodowanec, and W. G. Holter, "An analytical
approach to solving motor vibration problems," in Industry Applications
Society 46th Annual Petroleum and Chemical Technical Conference (Cat.
No. 99CH37000), 1999, pp. 217-232: IEEE.
[10] J. B. Jonker, R. Waiboer, and R. Aarts, "Modelling of joint friction in
robotic manipulators with gear transmissions," in Multibody Dynamics:
Springer, 2007, pp. 221-243.
[11] M. Itoh and H. Yoshikawa, "Vibration suppression control for an
articulated robot: Effects of model-based control applied to a waist axis,"
International Journal of Control, Automation, and Systems, vol. 1, no. 3,
pp. 263-270, 2003.
[12] A. Jubien, M. Gautier, and A. Janot, "Dynamic identification of the Kuka
LWR robot using motor torques and joint torque sensors data," IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 8391-8396, 2014.
[13] G. Testa, "Experimental stiffness identification in the joints of a
lightweight robotThe UR5 Manipulator as a Case Study," Master thesis
of Universitat Politècnica de Catalunya, 2017.
[14] C. Dumas, S. Caro, C. Mehdi, S. Garnier, and B. Furet, "Joint stiffness
identification of industrial serial robots," 2011.
[15] D. Whitley, "A genetic algorithm tutorial," Statistics and computing, vol.
4, no. 2, pp. 65-85, 1994.
[16] D. Tsetserukou, N. Kawakami, and S. Tachi, "Vibration damping control
of robot arm intended for service application in human environment," in
Humanoids 2008-8th IEEE-RAS International Conference on Humanoid
Robots, 2008, pp. 441-446: IEEE.
[17] L. Lichun, F. Jizai, and J. Peklenik, "A study of grinding force
mathematical model," CIRP Annals, vol. 29, no. 1, pp. 245-249, 1980.
[18] C. Yao, T. Wang, W. Xiao, X. Huang, and J. Ren, "Experimental study
on grinding force and grinding temperature of Aermet 100 steel in surface
grinding," Journal of Materials Processing Technology, vol. 214, no. 11,
pp. 2191-2199, 2014.
[19] D. J. Inman and R. C. Singh, Engineering vibration. Prentice Hall
Englewood Cliffs, NJ, 1994.
[20] R. b. J. M. Mistakes., "DYNAMIXEL e-Manual."
[21] murata, "SCL3300-D01 Manual."
[22] Panasonic, "HG-C1030 manual."