簡易檢索 / 詳目顯示

研究生: 謝志鴻
C. Max Hsieh
論文名稱: 用於光電元件抗反射層之蛾眼奈米結構晶圓級製備
Wafer-level Moth-Eye Nanostructures Fabrication for Anti-reflection in Optoelectronic Devices
指導教授: 葉哲良
J. Andrew Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 112
中文關鍵詞: 蛾眼結構抗反射結果晶圓級製造奈米金屬觸媒高深寬比矽奈米柱
外文關鍵詞: Moth-Eye Structure, Antireflection, Nanocatalyst, Wafer-level fabrication
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛾眼結構是一種仿生抗反射結構,亦是光學上所認定的二維次波長光柵(subwavelength grating)或是人造雙折變晶體(form birefrigence)。此類人造雙折變晶體可以簡單用光學上阻抗匹配的概念來做分析。自1967年由Bernhard於夜行性的飛蛾之複眼發現之後,其原理已廣泛研究至今。至今成功製作出蛾眼結構的方法在本論文中分成光學微影、自然微影(Natural lithography)與直接化學蝕刻等三種。為改進顯影時間過長,以及高深寬比非等向性的價格昂貴與極限,作者於本篇論文中提出一種相當簡單與迅速,對矽晶圓濕式化學蝕刻的蛾眼結構成型方式。其原理是利用奈米金屬觸媒來取代奈米級微影並強化非等向性蝕刻,來達到蛾眼結構奈米級週期與高深寬比的兩項光學訴求。目前在光波長為400到1000奈米的範圍內,已達到0.52%極低反射率並具備寬頻帶的抗反射效果。且在多晶矽太陽能晶圓上亦能夠使用本論文所開發的化學蝕刻法,並得到同樣低的反射率結果。預計在不久的未來將可取代在矽晶圓太陽能電池上,表面微米級粗化以及氮化矽鍍膜等抗反射技術。
    本論文於第一章先簡介已成功製作出蛾眼結構的相關文獻。第二章等效介質理論(effective medium theory)與嚴格耦合波分析(rigorous coupled-wave analysis)描述蛾眼結構光學行為。在第三章闡述本論文所提出的蛾眼結構製備方式如何設計與基本工作原理,接著第四章將呈現實驗成果,包括表面輪廓與光學特性。最後,將針對實驗進行討論並做出結論。


    Moth-eye structure (MES), biologically antireflective structure, can be regarded as an impedance-matching layer in optics. A biological antireflection structure discovered in a kind of nocturnal moth has been studied extensively on account of its tiny optical reflectance and being insensitive to large angle incident light since 1967. A great deal of literature has imitated the MES successfully and obtained the remarkable low reflectance as identical as the measurement result from the eyes of night-flying moth. However, a low-priced high throughput fabrication of MES is still not reported up to now.
    In this thesis, author manufactures the MES in the Si substrate using directly chemical etching with the advantage of low price and high throughput at the same time. The purely chemical etching assisted with metallic nanocatalyst replaces the advanced lithography and high-aspect-ratio plasma etching in the proposed fabrication. Anodic and cathodic etching is both used to modify the profile and optical characteristic of MES. The contour of MES in this thesis satisfies the requirement in optical design and the average reflectivity is 0.52% within the visible band. Moreover, the reflectivity is almost insensitive to the incident angle till 60□□□The extremely low reflectivity and rapidly simple fabrication has much potential to replace current technique of the micro-texture and antireflection coating. Finally, the wafer-level fabrication of antireflective moth-eye structure for optoelectronic application is fabricated successfully by a rapid and simple method.

    Abstract I 中文摘要 II 謝誌 III Contents IV List of Figures VII List of Tables XIII Chapter I Introduction 1 1.1 Anti-reflective layers 1 1.2 Review of Artificial Moth-Eye 6 1.2.1 Photolithography 8 1.2.2 Natural Lithography 12 1.2.3 Maskless etching 16 1.2.4 Summary of artificial MES 20 1.3 Objective and Organization of this Thesis 21 Chapter II Theoretical Background 23 2.1 Analysis of Moth-Eye Structure 23 2.1.1 Effective Medium Theory 23 2.1.2 Rigorous Coupled-wave Analysis 29 2.2 Simulation of Moth-Eye Structure 41 2.3 Design criterion of Moth-Eye Structure 45 Chapter III Fabrication 48 3.1 Nanocatalyst 48 3.2 Etching Mechanism 53 3.3 Assistance with Cathodic Direct Current 57 3.4 Modification with Anodic Etching 58 3.5 Process Flow and Experiment Apparatus 61 Chapter IV Experiments and Results 63 4.1 Specimen Preparation 63 4.2 Manufacture of Moth-Eye Structure 65 4.2.1 Chemical Etching 66 4.2.2 Chemical Etching with Cathodic Direct Current 67 4.2.3 Modification with Anodic Etching 68 4.3 Profile Measurement 71 4.4 Optical Measurement 76 4.4.1 Architecture of Measurement 76 4.4.2 Reflective Spectrum 77 Chapter V Discussion 86 5.1 Extremely Low Reflectivity in Visible Band 86 5.2 Exact Etching Mechanism 87 5.3 Assistance with Cathodic Current 92 5.4 Modification with Anodic Etching 94 5.5 Crystal Orientation 94 5.6 Replacement of Current Antireflective Layer 95 5.7 Extension Issue 97 Chapter VI Conclusion 100 Appendix 101 A. List of Symbol 101 B. Concentration Conversion of Hydrofluoric Acid 104 Reference 105 Curriculum Vitae 110

    [1] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 1st ed: Wiley, New York, pp.209, 1991.
    [2] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, USR, NJ07458, pp.26, 2001.
    [3] C. C. Striemera and P. M. Fauchet, “Dynamic etching of Si for broadband antireflection applications”, Applied. Physics Letters, Vol. 81, pp. 2980-2982, 2002.
    [4] T. Sakoda, K. Matsukuma, Y.-M. Sung, K. Otsubo, M. Tahara and Y. Nakashima, “Additional Plasma Surface Texturing for Single-Crystalline Si Solar Cells Using Dielectric Barrier Discharge”, The Japan Society of Applied Physics, Vol. 44, pp. 1730-1731, 2005.
    [5] C. G. Bernhard, “Strukturelle and funktionelle Adaption in einem visuellen System”, Endeavour, Vol. 26, pp. 79-84, 1967.
    [6] http://www.emlab.ubc.ca/
    [7] D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies” Proc. R. Soc. B , Vol.273, pp. 661-667, 2005.
    [8] B. S. Thornton, “Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design”, Journal of the Optical Society of America, Vol. 65, pp. 267-270, March, 1975.
    [9] P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the "Moth Eye" Principle”, Nature, Vol. 244, pp. 281-282, 1973.
    [10] P. Kunze and K. Hausen, “Inhomogeneous Refractive Index in the Crystalline Cone of a Moth Eye”, Nature, Vol. 231, pp. 392-393, 1971.
    [11] S. J. Wilson and M. C. Hutley, “The optical properties of `moth eye' antireflection surfaces”, Optica Acta, Vol. 29, pp. 993-1009, 1982.
    [12] W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces”, Journal of Optical Society of America A, Vol. 8, pp. 549-553, 1991.
    [13] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon Si substrates”, Optics Letters, Vol. 24, pp. 1422-1424, 1999.
    [14] A. Gombert, B. Bl□si, C. B□hler, P. Nitz, J. Mick, W. Ho□feld, M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas”, Optical Engineering, Vol. 43, pp. 2525-2533, 2004.
    [15] H. W. Deckman and J. H. Dunsmuir, “Natural lithography”, Applied Physics Letters, Vol. 41, pp. 377-379, 1982.
    [16] T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask”, Microelectronic Engineering, Vol. 83, pp. 1503–1508, 2006
    [17] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, Vol. 268, pp. 1466-1468, 1995.
    [18] D. Routkevitch, T. Bigioni, M. Moskovits, J.-M. Xu, “Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide templates”, Journal of Physical Chemistry, Vol. 100, pp. 14037-14047, 1996.
    [19] Z. Wang and H.-L. Li, “Highly ordered zinc oxide nanotubules synthesized within the anodic aluminum oxide template”, Appl. Phys. A – Material Science and Processing, Vol. 74, 201-203, 2002.
    [20] H Sai, H Fujii, K Arafune, Y Ohshita, M Yamaguchi, Y. Kanamori and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks”, Applied Physics Letters, Vol. 88, pp. 201116-201118, 2006.
    [21] C. Wu, C.-H. Crouch, L. Zhao, J.-E. Carey, R. Younkin, J.-A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon”, Applied Physics Letters, Vol. 78, pp. 1850-1853, 2001.
    [22] J. Shieh, C. H. Lin and M. C. Yang, “Plasma nanofabrications and antireflection applications”, J. Phys. D: Appl. Phys., Vol.40, pp. 2242-2246, 2007.
    [23] U. Schulz, A. Kaless, P. Munzert, N. Kaiser, “NANO-motheye antireflection structures on acrylic polymers”, Fraunhofer IOF Annual Report, 2004.
    [24] T. K. Gaylord, W. E. Baird and M. G. Moharam, “Zoro-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings”, Applied Optics, Vol.25, pp. 4562-4567, 1986.
    [25] M. E. Motamedi, W. H. Southwell and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology”, Applied Optics, Vol.31, pp. 4371-4376, 1992.
    [26] M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation the rigorous coupled-wave analysis of binary grating”, J. Opt. Soc. Am. A, Vol.12, pp. 1068-1076, 1995.
    [27] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings”, J. Opt. Soc. Am., Vol. 72, pp. 1385-1392, 1982.
    [28] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffracton”, J. Opt. Soc. Am., Vol. 71, pp. 811-818, 1981.
    [29] P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the Moth Eye Principle”, Nature, Vol. 244, pp. 281-282, 1973.
    [30] K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surface”, Applied Optics, Vol. 38, No. 2, pp. 352-356, 1999.
    [31] C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, “Damascene copper electroplating for chip interconnections”, IBM Journal of Research and Development, Vol. 42, pp. 567-574, 1998.
    [32] K. Peng Y. Wu, H. Fang, X. Zhong, Y. Xu and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays”, Angew. Chem. Int. Ed., Vol. 44, pp. 2737-2742, 2005.
    [33] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 prodeces porous silicon”, Applied Physics Letters, Vol. 77, pp. 2572-2574, 2000.
    [34] K. Tsujino and M. Matsumura, “Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst”, Advanced Materials, Vol. 17, pp. 1045-1047, 2005.
    [35] K. Tsujino and M. Matsumura, “Morphology of nanoholes formed in silicon by wet etching in solution containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts”, Electrochimica Acta, 2007. doi:10.1016/j.electacta.2007.01.035.
    [36] K. Peng Y.-J. Yan, S.-P. Gao and J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry”, Advanced Materials, Vol. 14, pp. 1164-1167, 2002.
    [37] K. Peng, Z. Huang and J. Zhu, “Fabrication of large-area silicon nanowire p-n junction diode arrays”, Advanced Materials, Vol. 16, pp. 73-76, 2004.
    [38] V. Lehmann, Electrochemistry of Silicon, Wiley-VCH Verlag GmbH, ISBN: 3-527-6027-2, 2002.
    [39] P. Jiang, S. Y. Li, H. Sugimura and O. Takai, “Pattern design in large area using octadecyltrichlorosilane self-assembled monolayers as resist material”, Applied Surface Science, Vol. 252, pp. 4230–4235, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE