簡易檢索 / 詳目顯示

研究生: 陳 奕
Chen, Yi
論文名稱: Ni/GeTe與Co/GeTe的界面反應與相關系統相平衡
Interfacial reactions and phase equilibria of Ni/GeTe and Co/GeTe system
指導教授: 陳信文
Chen, Sinn-Wen
口試委員: 汪上曉
王朝弘
紀沃德
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 相平衡界面反應
外文關鍵詞: GeTe, Ni
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電元件能將將廢熱回收轉換成電能,以提升能源使用效率。熱電元件通常是由陣列P-N型熱電材料組成,因此在元件中有許多接點,接點的性質與熱電元件的性能息息相關。GeTe為重要的中溫型熱電材料,Ni與Co常作為熱電元件的擴散阻障層。本研究探討Ni與Co擴散阻障層對GeTe的界面反應,以了解Ni與Co做為阻障層的合宜性。本研究也測定了Ni-Ge-Te與Co-Ge-Te三元系統相圖,提供基礎的材料系統知識,也有助於了解界面反應。
    使用純元素製備GeTe基材、Ni-Ge-Te三元合金與Co-Ge-Te三元合金。將合金試樣封入於抽真空的石英管中,放置於500℃與400℃的高溫爐中平衡。經過熱處理1至4個月後,淬冷於水中。以金相、組成、與粉末X-光繞射分析其平衡生成相。界面反應是以反應偶的實驗進行探討。利用電鍍方法於GeTe基材上鍍上Ni層與Co層。將Ni/GeTe與Co/GeTe反應偶,放置於高溫爐中。以金相分析與組成分析,分析生成相的種類、反應型態與厚度,並佐以相圖分析其反應機制。
    本研究發現Ni-Ge-Te系統在500℃與400℃,有二個三元化合物Ni3GeTe2與Ni5.45GeTe2。依據本研究的相平衡實驗、文獻中的三元與組成二元系統的相圖資料,推測出Ni-Ge-Te的在500℃與400℃的等溫橫截面相圖。在500℃,Ni-Ge-Te含有14個單相區與14個三相區。單相區分別為Ni、Ge、Liquid、Ni3Ge、Ni2Ge、Ni5Ge3、NiGe、NiTe2、NiTe0.775、Ni3Te2、α-GeTe、β-GeTe、Ni3GeTe2與Ni5.45GeTe2。在400℃,含有15個單相區與15個三相區。與500℃相比較,單相區少了β-GeTe,多了Te與γ-GeTe。
    Co-Ge-Te的三元系統在500℃與400℃,也有二個三元化合物Co2Ge3Te3與CoGeTe。在500℃,Co-Ge-Te含有15個單相區與15個三相區。單相區分別為α-Co、ε-Co、Ge、Liquid、Co2Ge、Co5Ge3、CoGe、Co5Ge7、CoGe2、CoTe2、Co2Te3、α-GeTe、β-GeTe、CoGeTe與Co2Ge3Te3。在400℃,包含了15個單相區與15個三相區。與500℃相比較,單相區少了β-GeTe與α-Co,多了Te與γ-GeTe。
    本研究在製備GeTe基材的過程中,發現GeTe在高溫仍為菱面體結構之α-GeTe而非立方體結構之β-GeTe,此點與文獻的結果並不一致。在Ge-Te於500℃的相平衡實驗中,隨著合金的Te含量增加,GeTe由α-GeTe轉變為β-GeTe。
    反應偶的實驗結果發現,界面反應生成多個且複雜的反應相,且反應層厚度隨著時間增加而增厚。Ni/GeTe在500℃下反應1天後,生成Ni3Te2、Ni3Ge、Ni5Ge3、NiGe、Ni5.45GeTe2與Ni3GeTe2,反應層厚度約為71 μm。在500℃下的擴散路徑為Ni/(Ni3Te2+Ni)/ Ni3Ge/(Ni3Ge+Ni5.45GeTe2)/(Ni5.45GeTe2+Ni5Ge3)/(Ni5Ge3+Ni3GeTe2)/(NiGe+Ni3GeTe2)/GeTe,Ni為主要擴散元素,其次為Te。在400℃下反應28天後,生成Ni5Ge3、NiGe、Ni5.45GeTe2與Ni3GeTe2,反應層厚度約為72 μm。在400℃下的擴散路徑為Ni/(Ni5Ge3+Ni5.45GeTe2)/ (Ni5Ge3+Ni3GeTe2)/ (NiGe+Ni3GeTe2)/ GeTe,Ni為主要擴散元素。
    Co/GeTe在500℃下反應14天後,生成Co2Te3、Co5Ge3、CoGe與CoGeTe,反應層厚度約為80 μm。界面處的擴散路徑為Co/Co2Te3/Co5Ge3/(Co5Ge3+Co2Te3)/(CoGe+Co2Te3)/CoGeTe/GeTe,Co為主要擴散元素,其次為Te。在400℃下反應50天後,生成CoGe2、Co5Ge3與Co2Te3,反應層厚度約為12 μm。在400℃下的擴散路徑為Co/CoGe2/Co5Ge3/ (Co5Ge3+Co2Te3)/ GeTe,Co為主要擴散元素,其次為Ge。
    在探討Co/GeTe的界面反應過程中,觀察到一個非常特殊的現象,在 Co層外圍亦觀察到反應層的生成。此生成相由內至外分別為(Co5Ge3+Co2Te3)、(CoGe+Co2Te3)、CoGeTe,本研究認為是由外圍Co層與氣化GeTe反應生成。


    Thermoelectric materials can directly convert waste heat energy into electrical energy to improve energy efficiency. Thermoelectric modules are usually composed of an array of P-N type thermoelectric materials. There are many contacts in the module, and the properties of the contacts are closely related to the performance of the thermoelectric module. A barrier layer is usually introduced between the thermelectric material and the joining material to prevent damage to the thermoelectric materials caused by intensive interfacial reactions. GeTe is an important medium-temperature thermoelectric material, and Ni and Co are often used as diffusion barriers for thermoelectric modules. This study investigated the interfacial reactions between Ni and Co and GeTe to understand the suitability of Ni and Co used as barrier layers. This study also determined the phase diagrams of the Ni-Ge-Te and Co-Ge-Te ternary systems, which provide basic material information and assistance to understand interfacial reactions.
    GeTe substrate, Ni-Ge-Te ternary alloy and Co-Ge-Te ternary alloy were prepared with pure Ni, pure Co, pure Ge and pure Te elements. Ternary alloys with various compositions were sealed in evacuated quartz tubes and equilibrated in furnaces at 500°C and 400°C. After heat treatment for 1 to 4 months, they were removed and quenched in water. The equilibrium phasee were analyzed by metallographic analysis, composition analysis and X-ray powder analysis. The Ni/GeTe and Co/GeTe couples were prepared by electroplating Ni and Co layers on the GeTe substrate obtained from quenching. The Ni/GeTe and Co/GeTe reaction couples were placed in a high temperature furnace. After various reaction times, the couples were removed from furnace and quenched. The morphologies, phases, and thickness of the reaction layers were examined by using metallographic analysis and composition analysis. The reaction mechanism was analyzed with the aid of phase diagrams.
    Two ternary compounds, Ni3GeTe2 and Ni5.42GeTe2, were found at 500℃ and 400℃. Based on the phase equilibrium results of this study and the phase equilibria results of the ternary and binary systems in the literature, the isothermal sections of Ni-Ge-Te at 500°C and 400°C are determined. At 500°C, Ni-Ge-Te contains 14 single-phase regions, which are Ni, Ge, Liquid, Ni3Ge, Ni2Ge, Ni5Ge3, NiGe, NiTe2, NiTe0.775, Ni3Te2, α-GeTe, β-GeTe, Ni3GeTe2 and Ni5.45GeTe2, and 14 three-phase regions, At 400°C, Ni-Ge-Te contains 15 single-phase regions and 15 three-phase regions. Compared with the results of 500℃, β-GeTe is not in single-phase regions, but Te and γ-GeTe are included. The ternary system of Co-Ge-Te also has two ternary compounds, Co2Ge3Te3 and CoGeTe, at 500℃ and 400℃. At 500°C, Co-Ge-Te contains 15 single-phase regions, which are α-Co, ε-Co, Ge, Liquid, Co2Ge, Co5Ge3, CoGe, Co5Ge7, CoGe2, CoTe2, Co2Te3, α-GeTe, β-GeTe, CoGeTe, Co2Ge3Te3, and 15 three-phase regions.At 400°C, Co-Ge-Te contains 15 single-phase regions and 15 three-phase regions. Compared with the results of 500℃, β-GeTe and α-Co are not in single-phase regions, but Te and γ-GeTe are included.
    It was found that the structure of the GeTe prepared in this study was rhombohedral, which was inconsistent with the results in the literature. In the phase equilibrium experiment of Ge-Te at 500℃, with the increase of Te content of the alloy, α-GeTe transformed into β-GeTe.
    The reaction layers in the couples had complicated morphologies and various phases, and the thickness of the reaction layer increased with time. Ni3Te2, Ni3Ge, Ni5Ge3, NiGe, Ni5.45GeTe2, and Ni3GeTe2 were formed after Ni/GeTe reacted at 500 °C for 1 day, and the thickness of the reaction layer was about 71 μm. The diffusion path of Ni/GeTe at 500℃ is Ni/(Ni3Te2+Ni)/Ni3Ge/(Ni3Ge+Ni5.45GeTe2)/(Ni5Ge3+Ni5.45GeTe2)/(Ni5Ge3+Ni3GeTe2)/(NiGe+Ni3GeTe2)/GeTe, and Ni is the main diffusion element, followed by Te. Ni5Ge3, NiGe, Ni5.45GeTe2, and Ni3GeTe2 were formed after Ni/GeTe reacted at 400 °C for 28 day, and the thickness of the reaction layer was about 72 μm. The diffusion path of Ni/GeTe at 400℃ is Ni/(Ni5Ge3+Ni5.45GeTe2)/(Ni5Ge3+Ni3GeTe2)/(NiGe+Ni3GeTe2)/GeTe, Ni is the main diffusion element.
    Co2Te3, Co5Ge3, CoGe, and CoGeTe were formed after Co/GeTe reacted at 500°C for 14 days, and the thickness of the reaction layer was about 80 μm. At 500℃, the diffusion path of Co/GeTe at the interface is Co/Co2Te3/Co5Ge3/(Co5Ge3+Co2Te3)/(CoGe+Co2Te3)/CoGeTe/GeTe, where Co is the main diffusion element, followed by Te. CoGe2, Co5Ge3 and Co2Te3 were formed after Co/GeTe reacted at 400°C for 50 days, and the thickness of the reaction layer was about 12 μm. The diffusion path of Co/GeTe at 400℃ is Co/CoGe2/Co5Ge3/(Co5Ge3+Co2Te3)/GeTe, where Co is the main diffusion element, followed by Ge.
    In addition, the formation of reaction layers was also observed at the outer Co layer. From the inside to the outside, the reaction phases were (Co5Ge3+Co2Te3), (CoGe+Co2Te3), and CoGeTe. It is believed that the formation was due to the reaction between the outer Co layer and the vaporized GeTe.

    摘要 i Abstract iv 目錄 viii 圖目錄 xi 表目錄 xv 第1章 前言 1 第2章 文獻回顧 3 2.1 熱電材料 3 2.1.1 熱電效應 4 2.1.2 熱電模組 5 2.1.3 GeTe熱電材料 7 2.2 界面反應 9 2.2.1 Ni/Ge 12 2.2.2 Ni/Te 12 2.2.3 Ni/GeTe 14 2.2.4 Co/Ge 14 2.2.5 Co/Te 15 2.2.6 Co/GeTe 16 2.3 相圖 17 2.3.1 Ni-Ge二元相圖 19 2.3.2 Ni-Te二元相圖 20 2.3.3 Ge-Te二元相圖 21 2.3.4 Co-Ge二元相圖 22 2.3.5 Co-Te二元相圖 23 2.3.6 Ni-Ge-Te三元相圖 24 2.3.7 Co-Ge-Te三元相圖 24 第3章 研究方法 25 3.1 界面反應 25 3.1.1 GeTe基材製備 25 3.1.2 Ni/GeTe反應偶製備 25 3.1.3 Co/GeTe反應偶製備 26 3.1.4 Co/Ge、Co/Te、Co/GeTe 500°C固-氣反應 26 3.1.5 樣品分析 26 3.2 等溫橫截面圖 27 3.2.1 合金點配置 27 3.2.2 樣品分析 27 第4章 結果與討論 28 4.1 Ni-Ge-Te 500℃等溫橫截面圖 28 4.1.1 NiTe2-Liquid兩相區 29 4.1.2 NiTe2-βGeTe-Liquid三相區 32 4.1.3 NiTe2-αGeTe-Ni3GeTe2三相區 34 4.1.4 NiGe-αGeTe-Ni3GeTe2三相區 37 4.1.5 NiGe-αGeTe-Ge三相區 40 4.1.6 Ni-Ge-Te 500℃等溫橫截面圖 43 4.2 GeTe基材 45 4.3 Ni/GeTe 500℃界面反應 51 4.3.1 Ni/GeTe 500℃界面反應分析 51 4.3.2 Ni/GeTe 500℃界面反應機制 59 4.4 Ni-Ge-Te 400℃等溫橫截面圖 60 4.4.1 NiTe2-Liquid-Te三相區 61 4.4.2 NiTe2-γGeTe-Liquid三相區 64 4.4.3 NiTe2-αGeTe-Ni3GeTe2三相區 67 4.4.4 Ni-Ge-Te 400℃等溫橫截面圖 69 4.5 Ni/GeTe 400℃界面反應 71 4.5.1 Ni/GeTe 400℃界面反應分析 71 4.5.2 Ni/GeTe 400℃界面反應機制 75 4.6 Co-Ge-Te 500℃等溫橫截面圖 76 4.6.1 CoTe2-Liquid兩相區 77 4.6.2 CoTe2-βGeTe -Liquid三相區 79 4.6.3 CoTe2-αGeTe兩相區 81 4.6.4 CoTe2-αGeTe-Co2Ge3Te3三相區 83 4.6.5 αGeTe-Co2Ge3Te3兩相區 86 4.6.6 Co-Ge-Te 500℃等溫橫截面圖 88 4.7 Co/GeTe 500℃界面反應 90 4.7.1 Co/GeTe 500℃界面反應分析 90 4.7.2 Co/GeTe 500℃界面反應分析(Co鍍層外圍) 93 4.7.3 Co/Ge、Co/Te、Co/GeTe 500°C固-氣反應 96 4.7.4 Co/GeTe 500℃界面反應機制 100 4.8 Co-Ge-Te 400℃等溫橫截面圖 102 4.8.1 CoTe2-Liquid-Te三相區 103 4.8.2 CoTe2-γGeTe-Liquid三相區 106 4.8.3 CoTe2-αGeTe兩相區 109 4.8.4 Co-Ge-Te 400℃等溫橫截面圖 111 4.9 Co/GeTe 400℃界面反應 113 4.9.1 Co/GeTe 400℃界面反應分析 113 4.9.2 Co/GeTe 400℃界面反應機制 115 第5章 結論 116 第6章 參考文獻 117

    [1] U.S. energy flow chart, LLNL, 2021. https://flowcharts.llnl.gov/
    [2] A. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen,”Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy & Environmental Science, vol. 2(5),pp. 466-479, 2009.
    [3] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, “A comprehensive review of Thermoelectric Generators: Technologies and common applications,” Energy Reports, 2019.
    [4] 陳洋元、陳正龍,「熱電於再生能源之運用」,物理雙月刊,42期(2),48-53頁,2020。
    [5] T. M. Tritt, “Thermoelectric materials: Principles, structure, properties, and applications”, Encyclopedia Mater: Sci Technol, pp. 1-11, 2002.
    [6] X. -F. Zheng, C. -X. Liu, Y. -Y. Yan, and Q. Wang, “A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 486-503, 2014.
    [7] 黃振東、徐振庭,「熱電材料」,科學發展,486期,48-53頁,2013。
    [8] A. Schlieper, Y. Feutelais, S. G. Fries, B. Legendre, R. Blachnik, “Thermodynamic evaluation of the Germanium—Tellurium system,” Calphad, Vol. 23(1), pp.1-18, 1999.
    [9] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei, “GeTe thermoelectrics,” Joule, vol. 4(5), pp. 986-1003, 2020.
    [10] X. Zhang, J. Li, X. Wang, Z. Chen, J. Mao, Y. Chen, and Y. Pei, “Vacancy manipulation for thermoelectric enhancements in GeTe alloys,” Journal of the American Chemical Society, vol. 140(46), pp.15883-15888, 2018.
    [11] E. M. Levin, M. F. Besser and R. Hanus, “Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials,” Journal of Applied Physics, vol. 114(8), 083713, 2013.
    [12] S. Perumal, S .Roychowdhury and K. Biswas, “High performance thermoelectric materials and devices based on GeTe,” Journal of Materials Chemistry C, vol. 4(32), pp. 7520-7536, 2016.
    [13] P. -C. Wei, C. -X. Cai, C. -R. Hsing, C. -M. Wei, S.-H. Yu, H. -J. Wu, C. -L. Chen, D. -H. Wei, D. -L. Nguyen, M. M. C. Chou and Y. -Y. Chen, “Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge 1− x Bi x) Te crystals,” Scientific reports, vol. 9(1), pp. 1-6, 2019.
    [14] J. Li, Z. Chen, X. Zhang, H. Yu, Z Wu, X. Xie, Y. Chen and Y. Pei, “Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics,” Advanced Science, vol. 4(12), 1700341, 2017.
    [15] A. Paul, T. Laurila, V. Vuorinen and S. V. Divinski, Thermodynamics, diffusion and the Kirkendall effect in solids, Springer International Publishing, 2014.
    [16] J. B. Clark, "Transactions of the America Institute of Mining, Metallurgical and Petroleum Engineers", vol. 227(5), pp. 1250-1251, 1963.
    [17] L. J. Jin, K. L. Pey, W. K. Choi, E. A. Fitzgerald, D. A. Antoniadis, A. J. Pitera, M. L. Lee, D. Z. Chi and C. H. Tung, “The interfacial reaction of Ni with (111) Ge,(100) Si0. 75Ge0. 25 and (100) Si at 400° C.” Thin Solid Films, vol. 462, pp. 151-155, 2004.
    [18] S.-W. Chen, T.-R. Yang, H.-W. Hsiao, J.-H. Huang, J.-D. Huang, “Ni/Te and Ni/Ag2Te interfacial reactions,“ Materials Chemistry and Physics, vol. 180, pp. 396-403, 2016.
    [19] H. M. Aldosari, H. Simchi, Z. Ding, K. A. Cooley, S. Y. Yu, and S. E. Mohney, “Impact of Premetallization Surface Preparation on Nickel-based Ohmic Contacts to Germanium Telluride: An X-ray Photoelectron Spectroscopic Study,” ACS applied materials & interfaces, vol. 8(50), pp. 34802-34809, 2016.
    [20] M. Genut, and M. Eizenberg, “Study of the Co‐Ge/GaAs contact system”, Journal of applied physics, vol. 68(5), pp. 2146-2157, 1990.
    [21] C. -Y. Ko and A. T. Wu, “Evaluation of diffusion barrier between pure Sn and Te”, Journal of electronic materials, vol.41(12), pp.3320-3324, 2012.
    [22] N. K. Abrikosov, L. I. Petrova, L. D. Dudkin, V. M. Sokolova, G. I. Shmelev, “Isothermal cross section of Co-Ge-Te system at 873K and GeTe-Co 2 Ge polythermal cross section”, Izv. Akad. Nauk SSSR, Neorg. Mater, vol. 18(3), pp.376-384, 1982.
    [23] 黃澤洋,碩士論文,國立清華大學,2019.
    [24] A. Nash, P. Nash, “The Ge−Ni (Germanium-Nickel) system,” Bulletin of Alloy Phase Diagrams,” vol. 8(3), pp. 255–264, 1987.
    [25] S. Jin, C. Leinenbach, J. Wang, L. I. Duarte, S. Delsante, G. Borzone, ... and A. Watson, “Thermodynamic study and re-assessment of the Ge-Ni system,” Calphad, vol. 38, pp. 23-34, 2012.
    [26] M. Ettenberg, K. L. Komarek and E. Miller, “Thermodynamic properties of nickel-tellurium alloys,” Journal of Solid State Chemistry, vol. 1(3-4), pp. 583-592, 1970.
    [27] S. Y. Lee and P. Nash, “Ni-Te (Nickel-Tellurium). In: T.B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (eds) Binary alloy phase diagrams,“ vol. 3, pp 2869-2872, 1990.
    [28] K. Ishida, and T. Nishizawa, “The Co-Ge (cobalt-germanium) system. Journal of phase equilibria,” vol. 12(1), pp. 77-83, 1991.
    [29] K. O. Klepp, K. L. Komarek, “Übergangsmetall—Chalkogensysteme,4.Mitt.: Die systeme Kobalt-Tellur und Kobalt-Nickel-Tellur”, Chemical Monthly, vol. 104(1), pp.105-117, 1973.
    [30] H. Yuan, J. Wang, B. Hu, R. Zhao, Y. Du, S. -Y. Zhang, “Thermodynamic assessment of the Te-X (X= As, Si, Co) systems”, Calphad, vol. 68, 101743, 2020.
    [31] H. J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, and R. K. Kremer, “Fe3GeTe2 and Ni3GeTe2–Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties,” Eur. J. Inorg. Chem., vol. 2006(8), pp. 1561-1567, 2006.
    [32] H. J. Deiseroth, F. Spirovski, C. Reiner, and M. Schlosser, “Crystal structures of nickel germanium selenide, Ni5. 45GeSe2, and nickel germanium telluride, Ni5. 45GeTe2,” Zeitschrift für Kristallographie-New Crystal Structures, vol. 222(3), pp. 171-172, 2007.
    [33] F. Laufek, J. Navratil, J. Plášil, and T. Plecháček, “Crystal structure determination of CoGeTe from powder diffraction data,” Journal of alloys and compounds, vol. 460(1-2), pp. 155-159, 2008.

    QR CODE