研究生: |
劉岱杰 Liu, Tai-Chieh |
---|---|
論文名稱: |
2-溴-3-烷基噻吩之酸催化聚合法及其共聚合之研究 The Study of Acid-catalyzed Polymerization of 2-Bromo-3-alkylthiophenes and their Copolymerization |
指導教授: |
韓建中
Han, Chien-Chung |
口試委員: |
彭之皓
Peng, Chi-How 白孟宜 Bai, Meng-Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 183 |
中文關鍵詞: | 聚噻吩 、酸催化聚合法 、共聚合 、導電高分子 |
外文關鍵詞: | polythiophene, acid-catalyzed polymerization, copolymerization, conducting polymer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在導電高分子 (conjugated polymers,CPs) 的研究當中,聚噻吩一直是許多學者們倍感興趣的對象,其中又以具有優良穩定性與溶解度的聚(3-烷基噻吩) (poly(3-alkylthiophene)s,P3ATs) 最受科學家們所關注,然而大多合成聚(3-烷基噻吩)的方法為利用過渡金屬催化進行合成,此方法不僅高成本且會造成環境汙染,使用的過渡金屬試劑甚至會殘留於聚噻吩當中,使得元件壽命減短,而本實驗室所開發之酸催化聚合法,便是一種無金屬催化的聚合法,且具有高產率與能適用於多種單體的優點,因此若能夠找出利用酸催化聚合法合成聚(3-烷基噻吩)的優化條件,在未來聚噻吩合成與應用上將會是一大進展。
首先為了找出最佳的聚合條件,我們以聚(3-十二烷基噻吩)為主要研究對象,透過改變反應濃度、反應溫度、酸催化當量數等條件,觀察聚合情形,發現最佳的聚合條件應在低濃度的反應溶液,較低的反應溫度,較多的催化酸當量數下進行反應,並透過UV-Vis、GPC、NMR、MALDI-TOF等儀器進行分析,探討其聚合行為與位向選擇性並發現其活性聚合之現象。
接著,利用酸催化聚合法與2-溴-3-己氧基噻吩以及2-溴-3-丁基噻吩進行共聚合,並利用UV-Vis、GPC、NMR、MALDI-TOF進行分析,與2-溴-3-己氧基噻吩共聚合之部分,由於兩者活性與鹼性相差過多,使得反應形成單聚物為主,嘗試改變合成策略後,因儀器之限制,導致難以判別是否形成共聚物,然而在與2-溴-3-丁基噻吩共聚合之部分,因兩者性質相似且鹼性差異不大,成功地合成出聚(3-十二烷基噻吩-3-丁基噻吩),更進一步證實了其活性聚合的特性:「只要反應溶液中還有單體存在,聚合反應便不會終止。」,亦開拓了未來利用酸催化聚合法合成聚(3-烷基噻吩)及其共聚物的應用性。
In the field of conjugated polymers (CPs), thiophene containing conjugated polymers have been the subject of intensive research over recent years. Particularly, poly(3-alkylthiophene)s (P3ATs) are of much interest due to their high stability, solubility and proven results in hand. The most commonly used method to synthesize P3ATs is transition metal catalyzed polycondensation. However, this method encounters severe problems like require high cost catalysts, contaminates environment and shortens the life of device due to residual transition metal catalyst. Therefore, we need a new method to overcome the above mentioned problems.
Having proven results in hand we are able to develop a new polymerization technique without using metal catalysts. This new polymerization technique, acid-catalyzed polymerization technique, not only overcomes the disadvantages faced by metal catalyzed polymerization but also polymerizes with high yields. It would be an added advantage if we could develop an optimized condition to synthesize P3ATs by using acid-catalyzed polymerization technique.
Firstly, our focus was to develop an optimized condition to synthesize poly(3-dodecylthiophene) (P3DDT) by varying monomer concentrations, reaction temperature and equivalents of acid used for the polymerization. Then, with some interesting observations, we successfully developed an optimized condition to synthesize P3DDT. Also, synthesized P3DDT polymers were characterized by using UV-Vis, GPC, NMR and MALDI-TOF measurements to understand the influence of regio-selectivity and the living polymerization.
In addition, we tried to synthesize P3DDT copolymers with 2-bromo-3-hexyloxythiophene (2B3HOT) and 2-bromo-3-butylthiophene (2B3BT). We are able to successfully synthesize poly(3-dodecylthiophene-co-3-butylthiophene) due to the similar reactivity and basicity of their monomers. This successful acid-catalyzed copolymerization is evident of living polymerization. Unfortunately, we are not able to copolymerize 2-bromo-3-dodecylthiophene (2B3DDT) and 2-bromo-3-hexyloxythiophene (2B3HOT) due to their different reactivity and basicity.
Finally, we successfully synthesized P3ATs and their copolymers via acid-catalyzed polymerization, this method can be used smoothly for our future applications also.
1. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Angew. Chem. Int. Ed., 1998, 37, 402-428.
2. Murat, A.; Tolga, K.; A.Sezai, S., Curr. Phys. Chem., 2012, 2, 224-240.
3. Burke, A., Ultracapacitors: Why, How, and Where is the Technology. 2000.
4. Roncali, J.; Garreau, R.; Delabouglise, D.; Garnier, F.; Lemaire, M., J. Chem. Soc., Chem. Commun., 1989, 679-681.
5. Shirakawa, H.; Ikeda, S., Polym. J., 1971, 2, 231-244.
6. Ito, T.; Shirakawa, H.; Ikeda, S., J. Polym. Sci., Part A: Polym. Chem., 1974, 12, 11-20.
7. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G., Phys. Rev. Lett., 1977, 39, 1098-1101.
8. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., J. Chem. Soc., Chem. Commun., 1977, 578-580.
9. Akamatu, H.; Inokuchi, H.; Matsunaga, Y., Nature, 1954, 173, 168-169.
10. Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H., J. Am. Chem. Soc., 1973, 95, 948-949.
11. Hush, N. S., Ann. N.Y. Acad. Sci., 2003, 1006, 1-20.
12. Sharma, P. S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W., Anal. Bioanal. Chem., 2012, 402, 3177-3204.
13. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Acta Biomaterialia, 2014, 10, 2341-2353.
14. Dai, L., Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer Science & Business Media: 2004.
15. Das, T. K.; Prusty, S., Polym. Plast. Technol. Eng., 2012, 51, 1487-1500.
16. Gerard, M.; Chaubey, A.; Malhotra, B. D., Biosens. Bioelectron., 2002, 17, 345-359.
17. McCullough, R. D., Adv. Mater., 1998, 10, 93-116.
18. Osaka, I.; McCullough, R. D., Acc. Chem. Res., 2008, 41, 1202-1214.
19. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D., Macromolecules, 2001, 34, 4324-4333.
20. Chen, T.-A.; Wu, X.; Rieke, R. D., J. Am. Chem. Soc., 1995, 117, 233-244.
21. Milstein, D.; Stille, J. K., J. Am. Chem. Soc., 1979, 101, 4992-4998.
22. Suzuki, A., J. Organomet. Chem., 1999, 576, 147-168.
23. Guillerez, S.; Bidan, G., Synth. Met., 1998, 93, 123-126.
24. Iraqi, A.; W. Barker, G., J. Mater. Chem., 1998, 8, 25-29.
25. Bjørnholm, T.; Greve, D. R.; Geisler, T.; Petersen, J. C.; Jayaraman, M.; McCullough, R. D., Adv. Mater., 1996, 8, 920-923.
26. (a)Han, C. C.*; Arumugam, B. “Method for forming conjugated heteroaromatic homopolymer and copolymer, and products thereof”, US patent application 13/662, 533 (Oct 28, 2012), US 2014-0121326 A1 (May 1, 2014). (b)韓建中*; 巴樂書 “共軛雜環芳香類均聚物及共聚物的形成方法以及其產物” 2013/4/11申請; 2015/8/7 核准; 中華民國發明專利 I504629 (2015), 專利權期2015/10/21-2033/4/10.
27. Bonillo, B.; Swager, T. M., J. Am. Chem. Soc., 2012, 134, 18916-18919.
28. Balasubramanian, A.; Ku, T.-C.; Shih, H.-P.; Suman, A.; Lin, H.-J.; Shih, T.-W.; Han, C.-C., Polym. Chem., 2014, 5, 5928-5941.
29. Wagner, P.; Jolley, K. W.; Officer, D. L., Aust. J. Chem., 2011, 64, 335-338.
30. 施婷文. 碩士論文. 國立清華大學, 2014.
31. 郭芳伶. 碩士論文. 國立清華大學, 2015.
32. Yang, Y. L.; Lee, Y. H.; Lee, Y. P.; Chiang, C. J.; Shen, C.; Wu, C. C.; Ohta, Y.; Yokozawa, T.; Dai, C. A., Polym. Int., 2014, 63, 2068-2075.
33. Oliveira, E. F.; Lavarda, F. C., Polym. Eng. Sci., 2016, 56, 479-487.
34. Smith, Z. C.; Wright, Z. M.; Arnold, A. M.; Sauvé, G.; McCullough, R. D.; Sydlik, S. A., Adv. Electron. Mater., 2017, 3.
35. Li, N.; Baran, D.; Forberich, K.; Machui, F.; Ameri, T.; Turbiez, M.; Carrasco-Orozco, M.; Drees, M.; Facchetti, A.; Krebs, F. C.; Brabec, C. J., Energy Environ Sci., 2013, 6, 3407-3413.
36. McCullough, R. D.; Tristram-Nagle, S.; Williams, S. P.; Lowe, R. D.; Jayaraman, M., J. Am. Chem. Soc., 1993, 115, 4910-4911.
37. 陳亭竹. 碩士論文. 國立清華大學, 2016.