研究生: |
洪正隆 Cheng-Lung Hung |
---|---|
論文名稱: |
鑭系元素添加及人工晶格結構之鋯酸鉛鋇薄膜於鐵電記憶體應用之研究 |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 鐵電記憶體 、人工晶格 、鋯酸鉛鋇 、鑭系元素 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電薄膜的研究中最多且最具開發潛力非記憶體莫屬,其中應用在非揮發性記憶體的鐵電材料,以鉛系列的鈣鈦礦結構Pb(Zr1-xTix)O3 (PZT),與鉍系列層狀鈣鈦礦結構的SrBi2Ta2O9 (SBT,亦稱為Y1)ヽBi4-xLaxTi3O12(BLT)最受重視。可惜的是,兩大系列的鐵電薄膜各有其應用的瓶頸有待突破,因此,本文針對鐵電薄膜應用於非揮發性記憶體之電性與極化疲勞等問題,提出了新思維,包括(1)開發本質缺陷濃度較低的鐵電薄膜,(2)使用施體添加劑降低鐵電薄膜的缺陷濃度與增加薄膜的價值性,(3)利用人工超晶格的結構以產生具線性鐵電行為之鐵電薄膜。
(Pb1-xBax)ZrO3(PBZ)陶瓷,x=0.2~0.4,具有鐵電性,利用濺鍍法在室溫鍍製PBZ鐵電薄膜並經退火熱處理後,即可得到鈣鈦礦結構的結晶相。PBZ薄膜的介電常數ヽ鐵電性和漏電流等諸多性質,除了受到材料中Pb/Ba比例的影響外,亦受到結晶性和熱處理溫度的影響。Pb/Ba成分比以80/20的靶材鍍製薄膜時,PBZ薄膜具有較高的Pr值與適當的Ec值,分別為Pr=10 μC/cm2、Ec=141 kV/cm,更重要的是,極化疲勞量測至1010 cycle後依然有初始值的80%以上。為了讓PBZ薄膜更具價值而可在較低外加電壓下操作,於薄膜中添加Nb元素的施體添加劑,添加量介於1.1% ~ 1.5%時可以得到較佳的鐵電特性與價值參數。
除了成分改變外,將PZO薄膜與BZO薄膜依序疊置在475℃的LaNiO3/Pt/Ti/SiO2/Si基板上而形成具(001)優選指向的對稱型(1:1)或非對稱型(3:1)之PZO/BZO人工超晶格薄膜。人工晶格具有較小的散逸因子,且介電常數隨週期厚度變薄而增加,當達到臨界厚度其值可達到最高,之後將因膜層間相互擴散而逐漸下降。此外,人工超晶格亦具有很好的漏電流特性,約在10-8 A/cm2 ~ 10-9 A/cm2,崩潰電場可達到300 kV/cm以上。
另外,PZO薄膜在室溫是反鐵電相,而BZO薄膜為一順電相,不過鍍製成非對稱型(3:1)人工晶格卻具有鐵電特性,其殘留極化值與矯頑電場對外加電壓呈現線性的關係,並由等效電路模型模擬線性鐵電特性可知,在鐵電層未達到飽和時,極化值與矯頑電場對外加電壓的關係為Pr= 和 ,且不論是介電常數或是鐵電特性都不受溫度增加而改變,最高溫可達至(Pb0.75Ba0.25)ZrO3固溶態的居禮溫度(125℃) 。更重要的是,人工晶格比PBZ薄膜具有更好的保持性,不論是室溫或是100℃,還保留初始值(1s)的85% (2□104 s)以上。
參考文獻
[1] J. F. Scott, C. Paz de Araujo, Science 246, (2000) 100.
[2] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, (1997).
[3] G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar “Processing and Performance of Integrated Ferroelectric and CMOS Test Structures for Memory Applications” Integrated Ferroelectrics 6 (1995) 93.
[4] H. Takasu, “Integrated Ferroelectrics as a Strategic Device”, Integrated Ferroelectrics 14 (1997) 1.
[5] S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, “Scaling Possibility of PZT Capacitors for High Density and Low-Voltage NVFRAM Application”, Integrated Ferroelectrics 17 (1997) 81.
[6] Betty Prince, “Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers, (2002).
[7] K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, “Process development of sub-0.5μm nonvolatile magnetoresistive random access memory arrays”, J. Vac. Sci. Technol. B 15 (1997) 2274.
[8] S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8, (1979) 333.
[9] Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai, Akio Kitagawa and Masakuni Suzuki, “Submicron Monvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses”, Jpn. J. Appl. Phys. 39 (2000) 6157.
[10]“FRAM Guide Book, Chapter 2”, Fujitsu Web Page <www.fujitsu.com>
[11] C. Feldman, View of Science Instrument 26, (1954) 463.
[12] I. H. Pratt and S. Firestone, J. Vac. & Sci. Technol. 8, (1971) 256.
[13]吳朗, “由MRAM / FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo. Tech., 16, ( 2000 ) 100.
[14] ITRS roadmap, (2003).
[15] H. M. Duiker, P. D. Beale, and J. F. Scott, “Fatigue and switching in ferroelectric memories: Theory and experiment”, J. Appl. Phys., 68, (1990) 5783.
[16] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. Mcmillan, and R. Zuleeg, “Quantitative measurement of space-charge effects in lead zirconate titanate memories”, J. Appl. Phys., 70, (1991) 382.
[17] G. Shirane, “Ferroelectricity and Antiferroelectricity in ceramic PbZrO3 containing Ba or Sr”, Phys. Rev., 86, (1952) 219.
[18] J. H. Tseng and T. B. Wu, “Ferroelectric lead barium zirconate thin film of high fatigue resistance”, Appl. Phys. Lett., 78, (2001) 1721.
[19] J. H. Tseng and T. B. Wu, Key Engineering Materials, 7, (2002) 133.
[20] 孫郁明, “添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發性記憶體
之研究”, 清華大學, 博士論文, (2003).
[21] I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukada, “Top-interface-controlled switching and fatigue endurance of (Pb,La)(Zr,Ti)O3 ferroelectric capacitors”, Appl. Phys. Lett., 74, (1999) 3552.
[22] S. B. Majumder, B. Roy, R. S. Katiyar, and S. B. Krupanidhi, “Effect of acceptor and donor dopants on polarization components of lead zirconate titanate thin films”, Appl. Phys. Lett., 79, (2001) 239.
[23] T. Haccart, E. Cattan, D. Remiens, S. Hiboux and P. Muralt, “Evaluation of niobium effects on the longitudinal piezoelectric coefficients of Pb(Zr, Ti)O3 thin films”, Appl. Phys. Lett., 76, (2000) 3292.
[24] J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, “Composition-control of magnetron-sputter-deposited (BaxSr1–x)Ti1 + yO3 + z thin films for voltage tunable devices”, Appl. Phys. Lett. 76, (2000) 625.
[25] B. H. Park, Y. Gim, Y. Fan, Q. X. Jia, and P. Lu, “High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates”, Appl. Phys. Lett. 77, (2000) 2587.
[26] L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and Randolph Treece, “The effect of annealing on the structure and dielectric properties of BaxSr1 – xTiO3 ferroelectric thin films”, Appl. Phys. Lett. 69, (1996) 25.
[27] H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties”, Appl. Phys. Lett. 65, (1994) 1970.
[28] Y. Xu, “Ferroelectric Materials and Their Applications”, North- Holland, Netherlands, (1991).
[29] J. F. Scott, “Ferroelectric Memories”, Springer, Germany, (2000).
[30] 李雅明, “固態電子學”, 全華科技, (1995).
[31] 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1996).
[32] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 8, 199.
[33] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 9, 221.
[34] J. Chen, M. P. Harmer, and D. M. Smith, “Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films”, J. Appl. Phys. 76, 5394 (1994).
[35] K. Amanuma, T. Hase and Y. Miyasaska, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. 66, (1995) 221.
[36] R. Dat, J. K. Lee, O.Auciello, and A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue”, Appl. Phys. Lett. 67, 572 (1995).
[37] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12”, Appl. Phys. Lett. 74, 1907 (1999).
[38] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[39] Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, “Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si(100) by metalorganic solution decomposition”, Appl. Phys. Lett. 78, (2001) 658.
[40] Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Y. N. Wang, “Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes”, Appl. Phys. Lett. 78, (2001) 4175.
[41] B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, N. K. Kim, S. J. Yeom, N. S. Kang and H. G. Yoon, “Highly Reliable 1 Mbit Ferroelectric Memories with Newly Developed BLT Thin Films and Steady Integration Schemes”, IEDM 2001.
[42] Phase Diagram for Ceramists, Fig. 862.
[43] Bhadra P. Pokharel and Dhananjai Pandey, “Dielectric studies of phase transitions in (Pb1–xBax)ZrO3”, J. Appl. Phys. 88, (2000) 5364.
[44] K. Yamakawa, K. W. Gachigi, S. T. McKinstry and J. P. Dougherty, “Structural and electrical properties of antiferroelectric lead zirconate thin films prepared by reactive magnetron co-sputtering”, J. Mater. Sci., 32, (1997) 5169.
[45] E. Sawaguchi, H. Maniwa and S. Hoshino, “ Antiferroelectric structure of Lead Zirconate”, Phys. Rev., 83, (1951) 1078.
[46] M. P. Moret, J. J. Schermer, F. D. Tichelaar, E. Aret and P. R. Hageman, “Structure and morphology of epitaxial PbZrO3 films grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 92, (2002) 3947.
[47] S. Roberts, “ Dielectric properties of lead zirconate and Barium-Lead Zirconate”, J. Am. Ceram. Soc., 33, (1950) 63.
[48] Z. G. Zhang, J. S. Liu, Y. N. Wang, J. S. Zhu, F. Yan, X. B. Chen, and H. M. Shen, “Fatigue characteristics of SrBi2Ta2O9 thin films prepared by metalorganic decomposition”, Appl. Phys.Lett. 73, 788 (1998).
[49] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”,Appl. Phys. Lett. 65, 1018 (1994).
[50] S. K. Dey, R. Barz, P. Majhi and C. G. Wang, “Microstructural and Dielectric Properties of High Permittivity (Pb, Ba) ZrO3 Thin Films by Sol-Gel Processing” , Jpn. J. Appl. Phys., 39, (2000) 921.
[51] 曾嘉宏, “以射頻磁控濺鍍法製作鋯酸鉛鋇薄膜之研究”, 清華大學, 碩士論文, (2000).
[52] I-Wei Chen and Y. Wang, “Activation field and fatigue of (Pb, La)(Zr, Ti)O3 thin films”, Appl. Phys. Lett., 75, (1999) 4186.
[53] M. H. Lente and J. A. Eiras, “90° domain reorientation and domain wall rearrangement in lead zirconate titanate ceramics characterized by transient current and hysteresis loop measurements”, J. Appl. Phys., 89, (2001) 5093.
[54] Qi Tan, Z. Xu, Jie-Fang Li, and Dwight Viehland, “Role of defect distributions and mobility on ferroelectric phase transformations in lead zirconate titanate”, Appl. Phys. Lett., 71, (1997) 1062.
[55] 黃良田, “釩添加對溶膠凝膠法鈦酸鉛薄膜之影響”, 清華大學, 碩士論文, (1994).
[56] 洪天爵, “鈦酸鉛薄膜之研究-製程ヽ微觀結構ヽ優選指向與鐵電特性”, 清華大學, 博士論文, (1995).
[57] Y. Wu, and G. Cao, “Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping”, Appl. Phys. Lett., 75, (1999) 2650.
[58] C. L. Canedy, H. Li, S. P. Alpay, L. Salamanca-Riba, A. L. Roytburd, and R. Ramesh, “Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects”, Appl. Phys. Lett. 77, (2000) 1695.
[59] W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films”, Appl. Phys. Lett. 76, (2000) 1185.
[60] W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, “The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films”, Appl. Phys. Lett. 74, (1999) 1033.
[61] B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, “Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films”, Appl. Phys. Lett. 78, (2001) 533.
[62] H.-C. Li, W. Si, R.-L. Wang, Y. Xuan, B.-T. Liu, and X. X. Xi, Mater. Sci. Eng., B 56, (1998) 218.
[63] H. Tabata, H. Tanaka, T. Kawai, and M. Okuyama, “Strained SrTiO3/BaTiO3 Superlattices Formed by Laser Ablation Technique and Their High Dielectric Properties”, Jpn. J. Appl. Phys. 34, (1995) 544.
[64] J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, “Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices”, Appl. Phys. Lett. 80, 3581 (2002).
[65] O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata and T. Kawai, “Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition”, Appl. Phys. Lett. 77, 3257 (2000).
[66] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure”, J. Appl. Phys. 91, (2002) 2290.
[67] I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 68, 328 (1996).
[68] A. Erbil, Y. Kim, and R. A. Gerjardt, “Giant Permittivity in Epitaxial Ferroelectric Heterostructures”, Phys. Rev. Lett. 77, 1629 (1996).
[69] K. H. Yoon, J. H. Shin, J. H. Park, and D. H. Kang, “Stacking effects on dielectric properties of sol-gel derived Pb(Zr0.53Ti0.47)O3/PbTiO3 thin films”, J. Appl. Phys. 83, 3626 (1998).
[70] C. Wang, M. Evstigneev, Q. F. Fang and Z. G. Zhu, “Dielectric properties of Pb(Zr20Ti80)O3 /Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering”, Appl. Phys. Lett. 82, 2880 (2003).
[71] J. H. Jang and K. H. Yoon, “Electric fatigue properties of sol–gel derived Pb(Zr, Ti)O3/PbZrO3 multilayered thin films”, Appl. Phys. Lett. 75, 130 (1999).
[72] C. P. D. Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Film: Synthesis and Basic Properties”, Gordon and Breach Publishers, (1996) 193.
[73] S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era, Lattice Press”, CA Sunset Beach, (1986) 384.
[74] E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny and G. Teowee, “"Investigation of Surface Roughness and Hillock Formation on Platinized Substrates Used for Pt/PZT/Pt Capacitor Fabrication", Integrated Ferroelectrics, 12, (1995) 61.
[75] K. Sreenivas, I. Reaney, T. Maeder and N. Setter, “Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75, (1994) 232.
[76] G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick and C. Mazure, Integrated Ferroelectrics, 17, (1997) 421.
[77] T. Ogawa, S. Shindou, A. Senda and T. Kasanami, Mater. Res. Soc. Symp. Proc., 243, (1992) 93.
[78] P. Revesz, J. Li, N. Szabo Jr., J. W. Mayer, D. Caudillo and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, (1992) 101.
[79] S. A. Mayers and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, (1992) 107.
[80] K. B. Lee, B. R. Rhee and S. K. Cho, Mater. Res. Soc. Symp. Proc., 433, (1996) 181.
[81] D. Barrow, C. V. R. V. Kumar, R. Pasual and M. Sayer, Mater. Res. Soc. Symp. Proc., 243, (1992) 113.
[82] R. N. Singh and E. F. Koch, J. Electrochem. Soc., 133, (1986) 1191.
[83] T. E. Clark, J. Vac. Sci. & Tech., B9, (1991) 1478.
[84] C. B. Eom, R. B. Van Dover, J. M. Philips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava and R. M. Fleming, “ Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO3) isotropic Metallic Oxide Electrodes”, Appl. Phys. Lett. 63 (1993) 2570.
[85] C. B. Eom, R. B. V. Dover, J. M. Phillips, R. M. Fleming, R. J. Cava, J. H. Marshall, D. J. Werder, C. H. Chen, and D. K. Fork, "Epitaxial Ferroelectric Heterostructures of Isotropic Metallic Oxide (SrRuO3) and Pb(Zr0.52Ti0.48)O3", Mater. Res. Soc. Symp. Proc. 310 (1993) 145.
[86] C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu and T. B. Wu, "Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrates by RF Magnetron Sputtering for the Growth of Textured PZT", Appl. Phys. Lett., 66, (1995) 2643.
[87] M. S. Chen, T. B. Wu and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”,Appl. Phys. Lett., 68, (1996) 1430.
[88] M. S. Chen, J. M. Wu, and T. B. Wu, "Effects of (100)-Textured LaNiO3 Electrode on the Crystallization and Properties of Sol-gel Derived Pb(Zr0.53Ti0.47)O3 Thin Films", Jpn. J. Appl. Phys., 34(9A) (1995) 4870.
[89] J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, “Correlation between internal stress and ferroelectric fatigue in Bi4–xLaxTi3O12 thin films”, Appl. Phys. Lett. 80, (2002) 3593.
[90] S. D. Bu, B. S. Kang, B. H. Park, and T. W. Noh, J. Korean Phys. Soc. 36, (2000) L9.
[91] H. N. Lee, and Dietrich Hesse, “Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations”, Appl. Phys. Lett. 80, (2002) 1040.
[92] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gősele, Science 296, (2002) 2006.
[93] Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung and Rich Liu, “Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode”, Jpn. J. Appl. Phys. 41, (2002) 6054.
[94] D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition”, J. Appl. Phys. 88, (2000) 5941.
[95] B. P. Maderic, L. E. Sanchez and S. Y. Wu, Ferroelectrics 116, (1991) 65.
[96] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett. 65, (1994) 1018.
[97] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77, (1995) 6695.
[98] C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics 151, (1994) 33.
[99] L. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc. 310, (1993) 165.
[100] W. Y. Pan, C. F. Yue and B. A. Tuttle, Ceram. Trans. 25, (1992) 385.
[101] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, , M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., “Voltage shifts and imprint in ferroelectric capacitors”, Appl. Phys. Lett. 67, (1995) 866.
[102] S. H. Kim, D. J. Kin, J. G. Hong, S. K. Streiffer and A. I. Kingon, “Imprint and fatigue Properties of Chemical Solution Dervied Pb1-xLax(ZryTi1-y)1-x/4O3 Thin films”, J. Mater. Res. 14, (1999) 1371.
[103] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, ”Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys. 70, (1991) 382.
[104] C. K. Kwok and S. B. Desu, “Role of Oxygen Vacancies on the Ferroelectric Properties of PZT Thin Films”, Mat. Res. Soc. Symp. Proc., 243, (1992) 393.
[105] P. K. Larsen, G. J. M. dormans, D. J. Taylor and P. J. V. Veldhoven, “Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model”, J. Appl. Phys., 76, (1994) 2405.
[106] R. C. Brade and G. S. Ansell, J. Am. Ceram. Soc. 52(4), (1969) 192.
[107] G. Arlt, Ferroelectrics 76, (1987) 451.
[108] K. Tsuzuki, “Recrystallization of Silicon-on-Insulator Structures by Sinusoidally-Scanned Electron Beams “, Jpn. J. Appl. Phys. 24, (1985) 126
[109] K. M. Lee, H.G. An, J. K. Lee, Y. T. Lee, Y. T. Lee, S.W. Lee, S. H. Joo, S. D. Nam, K. S. Park, M.S. Lee, S. O. Park, H. K. Kang and J. T. Moon, “Enhanced Retention Characteristics of Pb(Zr,Ti)O3 Capacitors by Ozone Treatment”, Jpn. J. Appl. Phys. 40, (2001) 4979.
[110] J. S. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin Films by the Selectively Nucleated Lateral Crystallization Methood”, Jpn. J. Appl. Phys. 40, (2001) 229.
[111] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of domain Retention in preferentially Oriented PbZr0.53Ti0.47O3 Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett. 75, (1999) 3183.
[112] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, “Voltage offsets in (Pb,La)(Zr,Ti)O3 thin films”, Appl. Phys. Lett. 66 (1995) 484.
[113] C. Paz de Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films:Synthesis and Basic Properties”, Overseas Publisher Association (1996) 525.
[114] R Ramesh, S. Aggarwal and O. Auciello, “Science and Technology of Ferroelectric Films and Heterostructures for Non-Volatile Ferroelectric Memories”, Appl. Phys. Lett. 32, (2001) 191.
[115] J. Lee, R Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike and J. T. Evans, “Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin-film capacitors with La-Sr-Co-O electrodes”, Appl. Phys. Lett. 66, (1995) 1337.
[116] B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMS”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, (1995) 373.
[117] A. J. Moulson and J. M. Herbert, “Electroceramics-Materials、Properties、Applications”, Chapman and Hall, (1990).
[118] 吳朗,“電子陶瓷-介電”, 全欣資訊圖書, (1994).
[119] M. Ohring, “The Materials Science of Thin Films”,Academic Press, (1992).
[120] P. K. Larsen, R. Cuppens and G. A. C. M. Spierings, Ferroelectric 128, (1992)
265.
[121] J. F. Scott and C. A. Paz de Araujo, Science 246 (1989) 1400.
[122] O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today 51 (1998) 22.
[123] J. Chen, M. P. Harmer, and D. M. Smith, “Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films”, J. Appl. Phys. 76 (1994) 5394.
[124] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett. 65 (1994) 1018.
[125] J. J. Lee, C. L. Thio, and S. B. Desu, “Electrode contacts on ferroelectric Pb(ZrxTi1–x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties”, J. Appl. Phys. 78 (1995) 5073.
[126] Gouji Asano, Hitoshi Morioka, Hiroshi Funakubo, Tetsuo Shibutami and Noriaki Oshima, “Fatigue-free RuO2 /Pb(Zr,Ti)O3 /RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395°C”, Appl. Phys. Lett. 83 (2003) 5506.
[127] G. J. Norga, L. Fe, D. J. Wouters, and H. E. Maes, “Effect of RuO2 growth
temperature on ferroelectric properties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt
capacitors”, Appl. Phys. Lett. 76, 1318 (2000).
[128] C. M. Foster, G. R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr and J. Amano, “Single-crystal Pb(ZrxTi1 – x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties”, J. Appl. Phys., 81, (1997) 2349.
[129] H. Watanabe, T. Mihata, H. Yoshimori and C. A. Paz de Araujo, “Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds “, Jpn. J. Appl. Phys., 34(9B), (1995) 5240.
[130] G. D. Hu, I. H. Wilson, J. B. Xu, C. P. Li, and S. P. Wong, “Low-temperature preparation and characterization of SrBi2Ta2O9 thin films on (100)-oriented LaNiO3 electrodes”, Appl. Phys. Lett. 76, 1758, (2000).
[132] S. Aggarwal, I. G. Jenkins, B. Nagaraj, C. J. Kerr, C. Canedy, R. Ramesh, G. Velasquez, L. Boyer, and J. T. Evans, “Switching properties of Pb(Nb, Zr, Ti)O3 capacitors using SrRuO3 electrodes”, Appl. Phys. Lett. 75 (1999) 1787.
[133] TR66A Standardized Ferroelectric Test System Operating Manual.
[134] TF Analyzer 2000 FE-Module 操作手冊.
[135] Bhadra P. Pokharel, Rajeev Ranjan, and Dhananjai Pandey, V. Siruguri and S. K. Paranjpe, “Rhombohedral superlattice structure and relaxor ferroelectric behavior of (Pb0.70Ba0.30)ZrO3 ceramics”, Appl. Phys. Lett. 74 (1999) 756.
[136] B. P. Pokharel, M. K. Datta, and D. Pandey, “ Influence of calcinations and sintering temperatures on the structure of (Pb1-xBax)ZrO3”, J. Mat. Sci. 34 (1999) 691.
[137] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices”, J. Vac. Sci. Technol. B 18, 1785 (2000).
[138] S. B. Majumder, B. Roy, R. S. Katiyar, and S. B. Krupanidhi, “Effect of acceptor and donor dopants on polarization components of lead zirconate titanate thin films”, Appl. Phys. Lett., 79, (2001) 239.
[139] K. Tominaga, A. Shirayanagi, T. Takagi, M. Okada, “Switching and Fatigue Characteristics of (Pb, La)(Zr, Ti)O3 Thin Films by Metalorganic Chemical Vapor Deposition”, Jpn J Appl Phys. 32 (1993) 4082.
[140] Dimos, R.W. Schwartz, S.J. Lockwood, J. Am. Ceram. Soc. 77 (1994) 3000.
[141] Al-Shareef, D. Dimos, J. Am. Ceram. Soc. 80 (1997) 3127.
[142] D. Bolten, U. Bo¨ ttger, T. Schneller, M. Grossmann, O. Lohse, and R. Waser, “ Reversible and irreversible processes in donor-doped Pb(Zr,Ti)O3”, Appl. Phys. Lett. 77 (2000) 3830.
[143] J. M. Benedetto, R. A. Moore and F. B. McLean, “Integrated Ferroelectrics”, 1 (1992) 195.
[144] S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead Based Ferroelectric Capacitors for Low Voltage Non-Volatile Memory Applications”, Integrated Ferroelectrics 19 (1998) 159.
[145] B. A. Tuttle, T. J. Garino, J. A. Volgt, T. J. Headley, D. Dimos and M. O. eatough, “Science and Technology of Electroceamic Thin Films”, 284 (Kluwer Academic, Dordrecht, 1995) 117.
[146] X. Dai, Z. Xu and D. iehland, “Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics”, J. Appl. Phys. 79 (1996) 1021.
[147] R. Ramesh and V. G. Keramidas, “ Metal-oxide heterostructures”, Annu. Rev. Mater. Sci 25 (1995) 647.
[148] S. N. Ryoo, S. G. Yoon, and S. H. Kim, “Improvement in ferroelectric properties of Pb(Zr0.35Ti0.65)O3 thin films using a Pb2Ru2O7–x conductive interfacial layer for ferroelectric random access memory application”, Appl. Phys. Lett. 83, 2880 (2003).
[149] J. M. Benedetto, R. A. Moore and F. B. McLean, “Effects of Operating Conditions on the Fast-Decay Component of the Retained Polarization in Lead Zirconate Titanate Thin Films”, J. Appl. Phys. 75 (1994) 1.
[150] J. Kakalios, R. A. Street and W. B. Jackson, Phys. Rev. Lett. 59 (1987) 1037.
[151] L. Kim, D. Jung, J. Kim, Y. S. Kim, and J. Lee, “Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity”, Appl. Phys. Lett. 82, (2003) 2118.
[152] H. C. Li, W. Si, R. L. Wang, Y. Xuan, B. T. Liu, and X. X. Xi, Mater. Sci. Eng., B 56, 218 (1998).
[153] A. Del Vecchio, L. Mirenghi, L. De Caro, L. Tapfer, C. Aruta, G. Petrocelli, and G. Balestrino, “Structural ordering and chemical configuration of Ba-based infinite-layer superlattices”, Appl. Phys. Lett., 82 (1997) 5465.
[154] Y. Ishibashi, N. Ohashi, and T. Tsusumi, “Structural Refinement of X-Ray Diffraction Profile for Artificial Superlattices “, Jpn. J. Appl. Phys. 39, 186 (2000).
[155] J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, “Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices”, Appl. Phys. Lett. 80, 3581 (2002).
[156] 劉勁麟, “氧化物電極上製備鐵電記憶體應用之PZT薄膜的研究”, 博士論文 (2002), 清華大學
[157] 梁元彰, “磊晶BaTiO3/LaNiO3人工超晶格特性之研究”, 博士論文 (2004), 清華大學
[158] A. Visinoiu, M. Alexe, H. N. Lee, D. N. Zakharov, A. Pignolet, D. Hesse, and U. Gösele, “Initial growth stages of epitaxial BaTiO3 films on vicinal SrTiO3 (001) substrate surfaces”, J. Appl. Phys. 91, (2002) 10157.
[159] W. C. Goh, S. Y. Xu, S. J. Wang, and C. K. Ong, “Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate”, J. Appl. Phys. 89, (2002) 4497.
[160] M. P. Moret, J. J. Schermer, F. D. Tichelaar, E. Aret and P. R. Hageman, “Structure and morphology of epitaxial PbZrO3 films grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 92, (2002) 3947.
[161] H. Maiwa, S. H. Kim, and N. Ichinose, “ Temperature dependence of the electrical and electromechanical properties of lead zirconate titanate thin films”, Appl. Phys. Lett. 83, 4396 (2003).
[162] S. S. N. Bharadwaja, and S. B. Krupanidhi, “Backward switching phenomenon from field forced ferroelectric to antiferroelectric phases in antiferroelectric PbZrO3 thin films”, J. Appl. Phys. 89, 4541 (2001).
[163] Isaku Kanno, Shigenori Hayashi, Masatoshi Kitagawa, Ryouichi Takayama, and Takashi Hirao, “Antiferroelectric PbZrO3 thin films prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 66, 145 (1995).
[164] Jiwei Zhai, Y. Yao, X. Li, T. F. Hung, Z. K. Xu, Haydn Chen, Eugene
V. Colla, and T. B. Wu, “Dielectric properties of oriented PbZrO3 thin films grown by sol-gel Process”,J. Appl. Phys. 92, 3990 (2002).
[165] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure”, J. Appl. Phys. 91, 2290 (2002).
[166] T. Ikeda, J. Phys. Soc. Jpn., 14, (1959) 168.
[167] G. A. Smolenskii and V. A. Isupov, Dokl. Akad. Nauk SSSR, 8, (1954) 1375
[168] V. I. Frisberg and B. N. Rolov, Izv. Akad. Nauk SSSR, Ser. Fiz., 28, (1964) 649.
[169] F. Xu, S. T. Mckinstry, W. Ren, B. Xu, Z.-L. Xie, and K. J. Hemker, “Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films”, J. Appl. Phys. 89, 1336 (2001).
[171] R. R. Metha, B. D. Silverman, and J. T. Jacobs, “Depolarization fields in thin ferroelectric films”, J. Appl. Phys. 44, 3379 (1973).
[172] J. Y. Tseng and T. B. Wu, Mater. Chem. Phys. 88, 433 (2004).