簡易檢索 / 詳目顯示

研究生: 洪正隆
Cheng-Lung Hung
論文名稱: 鑭系元素添加及人工晶格結構之鋯酸鉛鋇薄膜於鐵電記憶體應用之研究
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 169
中文關鍵詞: 鐵電記憶體人工晶格鋯酸鉛鋇鑭系元素
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電薄膜的研究中最多且最具開發潛力非記憶體莫屬,其中應用在非揮發性記憶體的鐵電材料,以鉛系列的鈣鈦礦結構Pb(Zr1-xTix)O3 (PZT),與鉍系列層狀鈣鈦礦結構的SrBi2Ta2O9 (SBT,亦稱為Y1)ヽBi4-xLaxTi3O12(BLT)最受重視。可惜的是,兩大系列的鐵電薄膜各有其應用的瓶頸有待突破,因此,本文針對鐵電薄膜應用於非揮發性記憶體之電性與極化疲勞等問題,提出了新思維,包括(1)開發本質缺陷濃度較低的鐵電薄膜,(2)使用施體添加劑降低鐵電薄膜的缺陷濃度與增加薄膜的價值性,(3)利用人工超晶格的結構以產生具線性鐵電行為之鐵電薄膜。
    (Pb1-xBax)ZrO3(PBZ)陶瓷,x=0.2~0.4,具有鐵電性,利用濺鍍法在室溫鍍製PBZ鐵電薄膜並經退火熱處理後,即可得到鈣鈦礦結構的結晶相。PBZ薄膜的介電常數ヽ鐵電性和漏電流等諸多性質,除了受到材料中Pb/Ba比例的影響外,亦受到結晶性和熱處理溫度的影響。Pb/Ba成分比以80/20的靶材鍍製薄膜時,PBZ薄膜具有較高的Pr值與適當的Ec值,分別為Pr=10 μC/cm2、Ec=141 kV/cm,更重要的是,極化疲勞量測至1010 cycle後依然有初始值的80%以上。為了讓PBZ薄膜更具價值而可在較低外加電壓下操作,於薄膜中添加Nb元素的施體添加劑,添加量介於1.1% ~ 1.5%時可以得到較佳的鐵電特性與價值參數。
    除了成分改變外,將PZO薄膜與BZO薄膜依序疊置在475℃的LaNiO3/Pt/Ti/SiO2/Si基板上而形成具(001)優選指向的對稱型(1:1)或非對稱型(3:1)之PZO/BZO人工超晶格薄膜。人工晶格具有較小的散逸因子,且介電常數隨週期厚度變薄而增加,當達到臨界厚度其值可達到最高,之後將因膜層間相互擴散而逐漸下降。此外,人工超晶格亦具有很好的漏電流特性,約在10-8 A/cm2 ~ 10-9 A/cm2,崩潰電場可達到300 kV/cm以上。
    另外,PZO薄膜在室溫是反鐵電相,而BZO薄膜為一順電相,不過鍍製成非對稱型(3:1)人工晶格卻具有鐵電特性,其殘留極化值與矯頑電場對外加電壓呈現線性的關係,並由等效電路模型模擬線性鐵電特性可知,在鐵電層未達到飽和時,極化值與矯頑電場對外加電壓的關係為Pr= 和 ,且不論是介電常數或是鐵電特性都不受溫度增加而改變,最高溫可達至(Pb0.75Ba0.25)ZrO3固溶態的居禮溫度(125℃) 。更重要的是,人工晶格比PBZ薄膜具有更好的保持性,不論是室溫或是100℃,還保留初始值(1s)的85% (2□104 s)以上。


    目 錄 表目錄…………………………………………………………………iv 圖目錄……………..…………………………………………………..v 第一章 緒論………………………………………………………....1 1-1 簡介……………………………………………….…………1 1-2 鐵電薄膜的發展…………………………………….………1 1-3 研究動機…………………………………………….............2 1-4 論文架構…………………………………………………….4 第二章 文獻回顧…………...…….…………………………………7 2-1 鐵電材料……………………………………………….……7 2-1-1 材料的晶體結構及特性………………………….….7 2-1-2 鐵電材料的特性……………………………………..8 2-1-3 鐵電材料的應用……………………………………10 2-2鋯酸鉛鋇((Pb1-xBax)ZrO3)系列鐵電薄膜……..……………12 2-3添加劑……….…………………………..………………......14 2-4 人工超晶格…………………………………………………17 2-4-1 BaTiO3/SrTiO3鐵電超晶格…………………………18 2-4-2 其他超晶格系統…………………………………....19 2-5 電極……..…………………………………………………..20 2-5-1 金屬電極…….……………………………………...20 2-5-2 氧化物電極..………………………………………..21 2-6 鐵電薄膜的製程技術………..…………………………….22 2-7 鐵電材料的特性分析…………………………….…..........25 2-7-1 鐵電性的量測………………………………………25 2-7-2 鐵電材料的可靠度分析……………………………26 2-7-3介電性質…………………………………………….28 2-7-4漏電流機制……………………………………….....30 第三章 鋯酸鉛鋇薄膜中不同鈮含量對電性之影響………….......55 3-1 簡介….………………………………………………...55 3-2 實驗步驟………………………….…………………...56 3-3 結果與討論…….……………………………………...59 3-4 結論…….………………………………………….......70 第四章 鋯酸鉛與鋯酸鋇對稱型(1:1)人工超晶格的製作 與電性的研究……………………………………………...95 4-1 簡介………...………………………………………….95 4-2 實驗步驟…...………………………………………….96 4-3 結果與討論………...………………………………….99 4-4 結論……….……....……………………………….…104 第五章 鋯酸鉛與鋯酸鋇非對稱型(3:1)人工超晶格的製作 與電性的究….….....……………………………………...120 5-1 簡介…...……………………………………………...120 5-2 實驗方法………...…………………………………...121 5-3 結果與討論………………...………………………...121 5-4 結論…………...…………………………………..….131 第六章 結論………..……………………………….……145 參考文獻……………………………………………………………..147 表目錄 表1-1 FeRAM和其它記憶體功能與特性比較 5 表1-2 FeRAM之近程技術發展 6 表1-3 鐵電材料特性之比較 6 表2-1 三十二種晶體對稱點群 35 表2-2 鐵電薄膜在記憶元件上應用之需求 36 表2-3 鐵電薄膜材料特性之比較 36 表2-4 (Pb1-xBax)ZrO3之介電常數(K’)和介電損失(tan δ) 對溫度的變化 37 表3-1 Pt底電極之鍍膜參數 72 表3-2 PBZ薄膜之鍍膜參數 72 表3-3 PBNZ薄膜之鍍膜參數 73 表3-4 Pt上電極之鍍膜參數 73 表3-5 (PbxBa1-x)ZrO3陶瓷塊材文獻資料,各種不同Pb:Ba比例 的居禮溫度 74 表3-6 PBZ與PBNZ鐵電薄膜特性之比較 74 表4-1 LaNiO3底電極之鍍膜參數 105 表4-2 PbZrO3薄膜之鍍膜參數 105 表4-3 BaZrO3薄膜之鍍膜參數 106 表4-4 不同週期厚度之PZO/BZO人工晶格薄膜的表面粗糙度值 106 圖目錄 圖2-1 晶體的對稱及特性分類圖 38 圖2-2 典型鐵電材料的電滯曲線 39 圖2-3 鐵電電容的電滯曲線及其對應的極化狀態 40 圖2-4 為1T-1C鐵電記憶體單位記憶胞的截面圖 41 圖2-5 1T-1C鐵電記憶胞的寫入/讀取操作原理 41 圖2-6 PbTiO3、PbZrO3、BaZrO3和BaTiO3四元相圖,其中Aα: 反鐵電相,Fα:鐵電相,P:順電相 42 圖2-7 (Pb,Ba)ZrO3成分與居禮溫度關係圖 42 圖2-8 反鐵電相的P-E特性量測 43 圖2-9 PbZrO3反鐵電相之自發極化排列的示意圖 43 圖2-10 (Pb1-xBax)ZrO3介電常數對溫度之變化 44 圖2-11 PbZrO3單位晶胞(unit cell)隨溫度之轉換 45 圖2-12 PLZT在室溫的相圖 45 圖2-13 BaTiO3/SrTiO3鐵電超晶格之結構示意圖 46 圖2-14 BaTiO3/SrTiO3超晶格中(a)介電常數隨週期厚度之變化 (b)不同週期厚度之介電常數隨溫度的變化 47圖2-15 具(111)指向BaTiO3/SrTiO3超晶格之(a) (111)平面間距 ,與(b)介電常數隨單層(sublayer)厚度之變化 48 圖2-16 RT-66A (Virtual ground mode)的等效電路圖 49 圖2-17 (a)脈衝量測的等效電路圖,(b)測量時之輸入脈衝序列 ,(c)疲勞測試脈衝序列 49 圖2-18 以兩個雙極脈衝測試時,△Ps與△Pns之電壓對時間的關係圖(上半部),而其差值(△Ps-△Pns)繪於下半部,τs為反轉時間 50 圖2-19 Fatigue、imprint、retention對電滯曲線造成的影響 50 圖2-20 鐵電材料中電域被電荷釘住的示意圖 51 圖2-21 捕獲電子與氧空缺所造成之空間電荷的示意圖 51 圖2-22 Imprint造成電滯曲線沿電壓軸偏移的示意圖 52 圖2-23 四種極化機構示意圖 52 圖2-24 頻率變化對極化機構的影響圖 53 圖2-25 實際電容器的相位變化圖 53 圖2-26 能障限制傳導機構:(a) 蕭基發射,(b) 穿隧效應 54 圖2-27 本體限制傳導機制:(a)空間電荷限制傳導,(b)離子傳導, (c)普爾-法蘭克放射 54 圖3-1 PBZ靶材製作流程圖 75 圖3-2 PBNZ靶材製作流程圖 76 圖3-3 PBNZ薄膜濺鍍示意圖 77 圖3-4 RT66A量測P-E電滯曲線所使用之電壓波形 77 圖3-5 疲勞測試期間,以RT66A量測P-E電滯曲線所使用之脈衝 圖3-6 TF 2000量測retention所使用之脈衝 78 圖3-7 室溫濺鍍(Pb0.8Ba0.2)ZrO3薄膜,並在爐管中做600℃~700℃ 、3分鐘熱處理之X光繞射圖 79 圖3-8 室溫濺鍍(Pb0.8Ba0.2)ZrO3、(Pb0.75Ba0.25)ZrO3、(Pb0.7Ba0.3)ZrO3和(Pb0.6Ba0.4)ZrO3薄膜並在爐管中進行700℃、3分鐘熱處理之X光繞射圖 79 圖3-9 室溫濺鍍不同過量Pb含量的(Pb0.8Ba0.2)ZrO3薄膜並在700℃ 爐管中作3分鐘熱處理之X光繞射圖 80 圖3-10 室溫濺鍍(Pb0.8Ba0.2)ZrO3、(Pb0.75Ba0.25)ZrO3、(Pb0.7Ba0.3)ZrO3 和(Pb0.6Ba0.4)ZrO3薄膜並在700℃爐管中作3分鐘熱處理之 介電常數、量測頻率關係圖 81 圖3-11 在100 kHz量測頻率下不同Pb/Ba比之PBZ薄膜的介電常數與散逸因子 81 圖3-12 不同過量PbO之(Pb0.8Ba0.2)ZrO3薄膜的(a)介電常數、散逸因子與量測頻率之關係 (b) 100 kHz量測頻率下不同過量Pb含量之(Pb0.8Ba0.2)ZrO3薄膜的介電常數與散逸因子 82 圖3-13 不同Pb/Ba比之PBZ薄膜的(a)極化-電場(P-E)電滯曲線 (b)殘留極化值(2Pr)及矯頑電場(2Ec)在等外加電場下之比較83 圖3-14 不同過量PbO之(Pb0.8Ba0.2)ZrO3薄膜的(a)極化-電場(P-E)電 滯曲線 (b)等外加電場下殘留極化值(2Pr)及矯頑電場(2Ec)之比較圖 84 圖3-15 不同Pb/Ba比之PBZ薄膜的漏電流密度-電場(J-E)曲線 85 圖3-16 掺雜靶材功率變化與薄膜中Nb掺雜量的關係圖 86 圖3-17 添加不同Nb含量的PBNZ薄膜之XRD圖 86 圖3-18 PBZ薄膜於700℃熱處理後,利用二次離子質譜儀(SIMS)量測薄膜的成分縱深分布分析 87 圖3-19 PBNZ薄膜於700℃熱處理後,利用二次離子質譜儀量測薄膜的成分縱深分布分析 87 圖3-20 添加不同Nb含量之PBNZ薄膜經700℃熱處理後之介電常數、散逸因子與量測頻率的關係圖 88 圖3-21 不同Nb添加量之PBNZ薄膜在100 kHz量測頻率之介電常數與散逸因子 89 圖3-22 不同Nb添加量之PBNZ薄膜的漏電流密度(J)-電場(E)的比 較 89 圖3-23 添加不同Nb含量之PBNZ薄膜的電滯曲線圖 90 圖3-24 等外加電場下殘留極化值(2Pr)及矯頑電場(2Ec)與薄膜中Nb掺雜量的關係圖 90 圖3-25 PBZ與PBNZ薄膜之極化疲勞測試圖 91 圖3-26 PBZ與PBNZ薄膜之極化疲勞測試標準化比較圖 91 圖3-27 極化量隨量測電壓與脈衝寬度變化關係圖 92 圖3-28 PBZ與PBNZ薄膜之極化量對時間的關係圖 93 圖3-29 ln[ ]對ln t之線性關係圖 93 圖4-1 PbZrO3靶材製作流程圖 107 圖4-2 BaZrO3靶材製作流程圖 108 圖4-3 LaNiO3靶材製作流程圖 109 圖4-4 以射頻磁控濺鍍法鍍製LNO薄膜之XRD圖 110 圖4-5 PZO/BZO人工晶格薄膜之結構示意圖 110 圖4-6 以射頻磁控濺鍍法鍍製PZO薄膜之XRD圖 111 圖4-7 以射頻磁控濺鍍法鍍製BZO薄膜之XRD圖 111 圖4-8 以射頻磁控濺鍍PZO/BZO人工晶格薄膜之XRD圖 112 圖4-9 PZO/BZO人工晶格薄膜之XRD局部放大圖 112 圖4-10 人工超晶格中層與層界面處的應力變化示意圖 113 圖4-11 [PZO(5 nm)/BZO(5 nm)]12二次離子質譜儀的 成分縱深分析 113 圖4-12 週期厚度為(a) 2.5nm/2.5nm (b) 7.5nm/7.5nm (c) 12.5nm/12.5nm (d) 20nm/20nm之人工晶格的AFM-3D立 體圖 114 圖4-13 PZO薄膜的介電常數、散逸因子與量測頻率關係圖 116 圖4-14 BZO薄膜的介電常數、散逸因子與量測頻率關係圖 116 圖4-14 人工晶格之週期厚度和介電常數、散逸因子及量測 頻率關係圖 117 圖4-15 人工晶格在100kHz下的介電常數與散逸因子對 週期厚度的變化 117 圖4-16 PZO薄膜的電滯曲線圖 118 圖4-17 BZO薄膜的電滯曲線圖 118 圖4-18 人工晶格薄膜的電滯曲線圖 119 圖4-19 PbZrO3ヽBaZrO3及人工晶格薄膜的漏電流密度- 電場(J-E)曲線 119 圖5-1 (Pb0.75Ba0.25)ZrO3與不同週期厚度之人工晶格的 X光繞射圖 133 圖5-2 (Pb0.75Ba0.25)ZrO3與不同週期厚度之人工晶格的c軸 晶格常數變化圖 133 圖5-3 人工超晶格中層與層界面處的應力變化示意圖 134 圖5-4 [PZO(6nm)/BZO(2nm)]15二次離子質譜儀的成分縱深分析134 圖5-5 [PZO(6nm)/BZO(2nm)]15人工晶格的TEM橫截面圖 135 圖5-6 [PZO(6nm)/BZO(2nm)]15人工晶格的TEM橫截面圖 135 圖5-7 (a) [PZO(6nm)/BZO(2nm)]15人工晶格的TEM橫截面圖 (b)高解析晶格像(HRTEM) (c)擇區繞射圖(SAED) 136圖5-8 不同週期厚度的人工晶格和PBZ的介電常數、散逸因子與量 測頻率關係圖 137 圖5-9 PBZ及人工晶格薄膜在100kHz下的介電常數量測 137 圖5-10 PBZ及人工晶格薄膜在1kHz及1MHz下之介電常數隨溫度 變化的關係圖 138 圖5-11 PBZ薄膜及人工晶格薄膜的電滯曲線圖 138 圖5-12 人工晶格薄膜之殘留極化值與矯頑電場對週期厚度的變化 139 圖5-13 殘留極化值(Pr)與矯頑電場(Ec)對外加電壓的關係圖 139 圖5-14 PBZ薄膜和PZO(1.5nm)/BZO(0.5nm)人工晶格於1msヽ100µs和10µs的電滯曲線圖 140 圖5-15 等外加電場下殘留極化值與矯頑電場隨溫度改變的 標準化圖 140 圖5-16 殘留極化值(Pr)與矯頑電場(Ec)在100℃對外加電壓的標準化圖 141 圖5-17 殘留極化值(Pr)與矯頑電場(Ec)在不同溫度下對外加電壓的變化圖 141 圖5-18 人工晶格之等效電路示意圖 142 圖5-19 人工晶格之介電常數量測值與理論推導值之比較 142 圖5-20 PBZ薄膜及人工晶格薄膜極化量對時間的關係圖 143 圖5-21 PBZ及PZO(1.5nm)/BZO(0.5nm)人工晶格薄膜在不同溫度之極化量對時間的標準化圖 143 圖5-22 (Pb0.75Ba0.25)ZrO3及人工晶格薄膜的漏電流密度-電場(J-E)曲線 144

    參考文獻

    [1] J. F. Scott, C. Paz de Araujo, Science 246, (2000) 100.
    [2] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, (1997).
    [3] G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar “Processing and Performance of Integrated Ferroelectric and CMOS Test Structures for Memory Applications” Integrated Ferroelectrics 6 (1995) 93.
    [4] H. Takasu, “Integrated Ferroelectrics as a Strategic Device”, Integrated Ferroelectrics 14 (1997) 1.
    [5] S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, “Scaling Possibility of PZT Capacitors for High Density and Low-Voltage NVFRAM Application”, Integrated Ferroelectrics 17 (1997) 81.
    [6] Betty Prince, “Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers, (2002).
    [7] K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, “Process development of sub-0.5μm nonvolatile magnetoresistive random access memory arrays”, J. Vac. Sci. Technol. B 15 (1997) 2274.
    [8] S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8, (1979) 333.
    [9] Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai, Akio Kitagawa and Masakuni Suzuki, “Submicron Monvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses”, Jpn. J. Appl. Phys. 39 (2000) 6157.
    [10]“FRAM Guide Book, Chapter 2”, Fujitsu Web Page <www.fujitsu.com>
    [11] C. Feldman, View of Science Instrument 26, (1954) 463.
    [12] I. H. Pratt and S. Firestone, J. Vac. & Sci. Technol. 8, (1971) 256.
    [13]吳朗, “由MRAM / FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo. Tech., 16, ( 2000 ) 100.
    [14] ITRS roadmap, (2003).
    [15] H. M. Duiker, P. D. Beale, and J. F. Scott, “Fatigue and switching in ferroelectric memories: Theory and experiment”, J. Appl. Phys., 68, (1990) 5783.
    [16] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. Mcmillan, and R. Zuleeg, “Quantitative measurement of space-charge effects in lead zirconate titanate memories”, J. Appl. Phys., 70, (1991) 382.
    [17] G. Shirane, “Ferroelectricity and Antiferroelectricity in ceramic PbZrO3 containing Ba or Sr”, Phys. Rev., 86, (1952) 219.
    [18] J. H. Tseng and T. B. Wu, “Ferroelectric lead barium zirconate thin film of high fatigue resistance”, Appl. Phys. Lett., 78, (2001) 1721.
    [19] J. H. Tseng and T. B. Wu, Key Engineering Materials, 7, (2002) 133.
    [20] 孫郁明, “添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發性記憶體
    之研究”, 清華大學, 博士論文, (2003).
    [21] I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukada, “Top-interface-controlled switching and fatigue endurance of (Pb,La)(Zr,Ti)O3 ferroelectric capacitors”, Appl. Phys. Lett., 74, (1999) 3552.
    [22] S. B. Majumder, B. Roy, R. S. Katiyar, and S. B. Krupanidhi, “Effect of acceptor and donor dopants on polarization components of lead zirconate titanate thin films”, Appl. Phys. Lett., 79, (2001) 239.
    [23] T. Haccart, E. Cattan, D. Remiens, S. Hiboux and P. Muralt, “Evaluation of niobium effects on the longitudinal piezoelectric coefficients of Pb(Zr, Ti)O3 thin films”, Appl. Phys. Lett., 76, (2000) 3292.
    [24] J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, “Composition-control of magnetron-sputter-deposited (BaxSr1–x)Ti1 + yO3 + z thin films for voltage tunable devices”, Appl. Phys. Lett. 76, (2000) 625.
    [25] B. H. Park, Y. Gim, Y. Fan, Q. X. Jia, and P. Lu, “High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates”, Appl. Phys. Lett. 77, (2000) 2587.
    [26] L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and Randolph Treece, “The effect of annealing on the structure and dielectric properties of BaxSr1 – xTiO3 ferroelectric thin films”, Appl. Phys. Lett. 69, (1996) 25.
    [27] H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties”, Appl. Phys. Lett. 65, (1994) 1970.
    [28] Y. Xu, “Ferroelectric Materials and Their Applications”, North- Holland, Netherlands, (1991).
    [29] J. F. Scott, “Ferroelectric Memories”, Springer, Germany, (2000).
    [30] 李雅明, “固態電子學”, 全華科技, (1995).
    [31] 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1996).
    [32] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 8, 199.
    [33] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 9, 221.
    [34] J. Chen, M. P. Harmer, and D. M. Smith, “Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films”, J. Appl. Phys. 76, 5394 (1994).
    [35] K. Amanuma, T. Hase and Y. Miyasaska, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. 66, (1995) 221.
    [36] R. Dat, J. K. Lee, O.Auciello, and A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue”, Appl. Phys. Lett. 67, 572 (1995).
    [37] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12”, Appl. Phys. Lett. 74, 1907 (1999).
    [38] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
    [39] Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, “Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si(100) by metalorganic solution decomposition”, Appl. Phys. Lett. 78, (2001) 658.
    [40] Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Y. N. Wang, “Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes”, Appl. Phys. Lett. 78, (2001) 4175.
    [41] B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, N. K. Kim, S. J. Yeom, N. S. Kang and H. G. Yoon, “Highly Reliable 1 Mbit Ferroelectric Memories with Newly Developed BLT Thin Films and Steady Integration Schemes”, IEDM 2001.
    [42] Phase Diagram for Ceramists, Fig. 862.
    [43] Bhadra P. Pokharel and Dhananjai Pandey, “Dielectric studies of phase transitions in (Pb1–xBax)ZrO3”, J. Appl. Phys. 88, (2000) 5364.
    [44] K. Yamakawa, K. W. Gachigi, S. T. McKinstry and J. P. Dougherty, “Structural and electrical properties of antiferroelectric lead zirconate thin films prepared by reactive magnetron co-sputtering”, J. Mater. Sci., 32, (1997) 5169.
    [45] E. Sawaguchi, H. Maniwa and S. Hoshino, “ Antiferroelectric structure of Lead Zirconate”, Phys. Rev., 83, (1951) 1078.
    [46] M. P. Moret, J. J. Schermer, F. D. Tichelaar, E. Aret and P. R. Hageman, “Structure and morphology of epitaxial PbZrO3 films grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 92, (2002) 3947.
    [47] S. Roberts, “ Dielectric properties of lead zirconate and Barium-Lead Zirconate”, J. Am. Ceram. Soc., 33, (1950) 63.
    [48] Z. G. Zhang, J. S. Liu, Y. N. Wang, J. S. Zhu, F. Yan, X. B. Chen, and H. M. Shen, “Fatigue characteristics of SrBi2Ta2O9 thin films prepared by metalorganic decomposition”, Appl. Phys.Lett. 73, 788 (1998).
    [49] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”,Appl. Phys. Lett. 65, 1018 (1994).
    [50] S. K. Dey, R. Barz, P. Majhi and C. G. Wang, “Microstructural and Dielectric Properties of High Permittivity (Pb, Ba) ZrO3 Thin Films by Sol-Gel Processing” , Jpn. J. Appl. Phys., 39, (2000) 921.
    [51] 曾嘉宏, “以射頻磁控濺鍍法製作鋯酸鉛鋇薄膜之研究”, 清華大學, 碩士論文, (2000).
    [52] I-Wei Chen and Y. Wang, “Activation field and fatigue of (Pb, La)(Zr, Ti)O3 thin films”, Appl. Phys. Lett., 75, (1999) 4186.
    [53] M. H. Lente and J. A. Eiras, “90° domain reorientation and domain wall rearrangement in lead zirconate titanate ceramics characterized by transient current and hysteresis loop measurements”, J. Appl. Phys., 89, (2001) 5093.
    [54] Qi Tan, Z. Xu, Jie-Fang Li, and Dwight Viehland, “Role of defect distributions and mobility on ferroelectric phase transformations in lead zirconate titanate”, Appl. Phys. Lett., 71, (1997) 1062.
    [55] 黃良田, “釩添加對溶膠凝膠法鈦酸鉛薄膜之影響”, 清華大學, 碩士論文, (1994).
    [56] 洪天爵, “鈦酸鉛薄膜之研究-製程ヽ微觀結構ヽ優選指向與鐵電特性”, 清華大學, 博士論文, (1995).
    [57] Y. Wu, and G. Cao, “Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping”, Appl. Phys. Lett., 75, (1999) 2650.
    [58] C. L. Canedy, H. Li, S. P. Alpay, L. Salamanca-Riba, A. L. Roytburd, and R. Ramesh, “Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects”, Appl. Phys. Lett. 77, (2000) 1695.
    [59] W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films”, Appl. Phys. Lett. 76, (2000) 1185.
    [60] W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, “The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films”, Appl. Phys. Lett. 74, (1999) 1033.
    [61] B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, “Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films”, Appl. Phys. Lett. 78, (2001) 533.
    [62] H.-C. Li, W. Si, R.-L. Wang, Y. Xuan, B.-T. Liu, and X. X. Xi, Mater. Sci. Eng., B 56, (1998) 218.
    [63] H. Tabata, H. Tanaka, T. Kawai, and M. Okuyama, “Strained SrTiO3/BaTiO3 Superlattices Formed by Laser Ablation Technique and Their High Dielectric Properties”, Jpn. J. Appl. Phys. 34, (1995) 544.
    [64] J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, “Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices”, Appl. Phys. Lett. 80, 3581 (2002).
    [65] O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata and T. Kawai, “Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition”, Appl. Phys. Lett. 77, 3257 (2000).
    [66] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure”, J. Appl. Phys. 91, (2002) 2290.
    [67] I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 68, 328 (1996).
    [68] A. Erbil, Y. Kim, and R. A. Gerjardt, “Giant Permittivity in Epitaxial Ferroelectric Heterostructures”, Phys. Rev. Lett. 77, 1629 (1996).
    [69] K. H. Yoon, J. H. Shin, J. H. Park, and D. H. Kang, “Stacking effects on dielectric properties of sol-gel derived Pb(Zr0.53Ti0.47)O3/PbTiO3 thin films”, J. Appl. Phys. 83, 3626 (1998).
    [70] C. Wang, M. Evstigneev, Q. F. Fang and Z. G. Zhu, “Dielectric properties of Pb(Zr20Ti80)O3 /Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering”, Appl. Phys. Lett. 82, 2880 (2003).
    [71] J. H. Jang and K. H. Yoon, “Electric fatigue properties of sol–gel derived Pb(Zr, Ti)O3/PbZrO3 multilayered thin films”, Appl. Phys. Lett. 75, 130 (1999).
    [72] C. P. D. Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Film: Synthesis and Basic Properties”, Gordon and Breach Publishers, (1996) 193.
    [73] S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era, Lattice Press”, CA Sunset Beach, (1986) 384.
    [74] E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny and G. Teowee, “"Investigation of Surface Roughness and Hillock Formation on Platinized Substrates Used for Pt/PZT/Pt Capacitor Fabrication", Integrated Ferroelectrics, 12, (1995) 61.
    [75] K. Sreenivas, I. Reaney, T. Maeder and N. Setter, “Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75, (1994) 232.
    [76] G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick and C. Mazure, Integrated Ferroelectrics, 17, (1997) 421.
    [77] T. Ogawa, S. Shindou, A. Senda and T. Kasanami, Mater. Res. Soc. Symp. Proc., 243, (1992) 93.
    [78] P. Revesz, J. Li, N. Szabo Jr., J. W. Mayer, D. Caudillo and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, (1992) 101.
    [79] S. A. Mayers and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, (1992) 107.
    [80] K. B. Lee, B. R. Rhee and S. K. Cho, Mater. Res. Soc. Symp. Proc., 433, (1996) 181.
    [81] D. Barrow, C. V. R. V. Kumar, R. Pasual and M. Sayer, Mater. Res. Soc. Symp. Proc., 243, (1992) 113.
    [82] R. N. Singh and E. F. Koch, J. Electrochem. Soc., 133, (1986) 1191.
    [83] T. E. Clark, J. Vac. Sci. & Tech., B9, (1991) 1478.
    [84] C. B. Eom, R. B. Van Dover, J. M. Philips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava and R. M. Fleming, “ Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO3) isotropic Metallic Oxide Electrodes”, Appl. Phys. Lett. 63 (1993) 2570.
    [85] C. B. Eom, R. B. V. Dover, J. M. Phillips, R. M. Fleming, R. J. Cava, J. H. Marshall, D. J. Werder, C. H. Chen, and D. K. Fork, "Epitaxial Ferroelectric Heterostructures of Isotropic Metallic Oxide (SrRuO3) and Pb(Zr0.52Ti0.48)O3", Mater. Res. Soc. Symp. Proc. 310 (1993) 145.
    [86] C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu and T. B. Wu, "Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrates by RF Magnetron Sputtering for the Growth of Textured PZT", Appl. Phys. Lett., 66, (1995) 2643.
    [87] M. S. Chen, T. B. Wu and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”,Appl. Phys. Lett., 68, (1996) 1430.
    [88] M. S. Chen, J. M. Wu, and T. B. Wu, "Effects of (100)-Textured LaNiO3 Electrode on the Crystallization and Properties of Sol-gel Derived Pb(Zr0.53Ti0.47)O3 Thin Films", Jpn. J. Appl. Phys., 34(9A) (1995) 4870.
    [89] J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, “Correlation between internal stress and ferroelectric fatigue in Bi4–xLaxTi3O12 thin films”, Appl. Phys. Lett. 80, (2002) 3593.
    [90] S. D. Bu, B. S. Kang, B. H. Park, and T. W. Noh, J. Korean Phys. Soc. 36, (2000) L9.
    [91] H. N. Lee, and Dietrich Hesse, “Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations”, Appl. Phys. Lett. 80, (2002) 1040.
    [92] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gősele, Science 296, (2002) 2006.
    [93] Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung and Rich Liu, “Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode”, Jpn. J. Appl. Phys. 41, (2002) 6054.
    [94] D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition”, J. Appl. Phys. 88, (2000) 5941.
    [95] B. P. Maderic, L. E. Sanchez and S. Y. Wu, Ferroelectrics 116, (1991) 65.
    [96] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett. 65, (1994) 1018.
    [97] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77, (1995) 6695.
    [98] C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics 151, (1994) 33.
    [99] L. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc. 310, (1993) 165.
    [100] W. Y. Pan, C. F. Yue and B. A. Tuttle, Ceram. Trans. 25, (1992) 385.
    [101] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, , M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., “Voltage shifts and imprint in ferroelectric capacitors”, Appl. Phys. Lett. 67, (1995) 866.
    [102] S. H. Kim, D. J. Kin, J. G. Hong, S. K. Streiffer and A. I. Kingon, “Imprint and fatigue Properties of Chemical Solution Dervied Pb1-xLax(ZryTi1-y)1-x/4O3 Thin films”, J. Mater. Res. 14, (1999) 1371.
    [103] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, ”Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys. 70, (1991) 382.
    [104] C. K. Kwok and S. B. Desu, “Role of Oxygen Vacancies on the Ferroelectric Properties of PZT Thin Films”, Mat. Res. Soc. Symp. Proc., 243, (1992) 393.
    [105] P. K. Larsen, G. J. M. dormans, D. J. Taylor and P. J. V. Veldhoven, “Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model”, J. Appl. Phys., 76, (1994) 2405.
    [106] R. C. Brade and G. S. Ansell, J. Am. Ceram. Soc. 52(4), (1969) 192.
    [107] G. Arlt, Ferroelectrics 76, (1987) 451.
    [108] K. Tsuzuki, “Recrystallization of Silicon-on-Insulator Structures by Sinusoidally-Scanned Electron Beams “, Jpn. J. Appl. Phys. 24, (1985) 126
    [109] K. M. Lee, H.G. An, J. K. Lee, Y. T. Lee, Y. T. Lee, S.W. Lee, S. H. Joo, S. D. Nam, K. S. Park, M.S. Lee, S. O. Park, H. K. Kang and J. T. Moon, “Enhanced Retention Characteristics of Pb(Zr,Ti)O3 Capacitors by Ozone Treatment”, Jpn. J. Appl. Phys. 40, (2001) 4979.
    [110] J. S. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin Films by the Selectively Nucleated Lateral Crystallization Methood”, Jpn. J. Appl. Phys. 40, (2001) 229.
    [111] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, “Nanoscale Investigation of domain Retention in preferentially Oriented PbZr0.53Ti0.47O3 Thin Films on Pt and on LaNiO3”, Appl. Phys. Lett. 75, (1999) 3183.
    [112] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, “Voltage offsets in (Pb,La)(Zr,Ti)O3 thin films”, Appl. Phys. Lett. 66 (1995) 484.
    [113] C. Paz de Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films:Synthesis and Basic Properties”, Overseas Publisher Association (1996) 525.
    [114] R Ramesh, S. Aggarwal and O. Auciello, “Science and Technology of Ferroelectric Films and Heterostructures for Non-Volatile Ferroelectric Memories”, Appl. Phys. Lett. 32, (2001) 191.
    [115] J. Lee, R Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike and J. T. Evans, “Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin-film capacitors with La-Sr-Co-O electrodes”, Appl. Phys. Lett. 66, (1995) 1337.
    [116] B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMS”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, (1995) 373.
    [117] A. J. Moulson and J. M. Herbert, “Electroceramics-Materials、Properties、Applications”, Chapman and Hall, (1990).
    [118] 吳朗,“電子陶瓷-介電”, 全欣資訊圖書, (1994).
    [119] M. Ohring, “The Materials Science of Thin Films”,Academic Press, (1992).
    [120] P. K. Larsen, R. Cuppens and G. A. C. M. Spierings, Ferroelectric 128, (1992)
    265.
    [121] J. F. Scott and C. A. Paz de Araujo, Science 246 (1989) 1400.
    [122] O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today 51 (1998) 22.
    [123] J. Chen, M. P. Harmer, and D. M. Smith, “Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films”, J. Appl. Phys. 76 (1994) 5394.
    [124] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett. 65 (1994) 1018.
    [125] J. J. Lee, C. L. Thio, and S. B. Desu, “Electrode contacts on ferroelectric Pb(ZrxTi1–x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties”, J. Appl. Phys. 78 (1995) 5073.
    [126] Gouji Asano, Hitoshi Morioka, Hiroshi Funakubo, Tetsuo Shibutami and Noriaki Oshima, “Fatigue-free RuO2 /Pb(Zr,Ti)O3 /RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395°C”, Appl. Phys. Lett. 83 (2003) 5506.
    [127] G. J. Norga, L. Fe, D. J. Wouters, and H. E. Maes, “Effect of RuO2 growth
    temperature on ferroelectric properties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt
    capacitors”, Appl. Phys. Lett. 76, 1318 (2000).
    [128] C. M. Foster, G. R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr and J. Amano, “Single-crystal Pb(ZrxTi1 – x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties”, J. Appl. Phys., 81, (1997) 2349.
    [129] H. Watanabe, T. Mihata, H. Yoshimori and C. A. Paz de Araujo, “Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds “, Jpn. J. Appl. Phys., 34(9B), (1995) 5240.
    [130] G. D. Hu, I. H. Wilson, J. B. Xu, C. P. Li, and S. P. Wong, “Low-temperature preparation and characterization of SrBi2Ta2O9 thin films on (100)-oriented LaNiO3 electrodes”, Appl. Phys. Lett. 76, 1758, (2000).
    [132] S. Aggarwal, I. G. Jenkins, B. Nagaraj, C. J. Kerr, C. Canedy, R. Ramesh, G. Velasquez, L. Boyer, and J. T. Evans, “Switching properties of Pb(Nb, Zr, Ti)O3 capacitors using SrRuO3 electrodes”, Appl. Phys. Lett. 75 (1999) 1787.
    [133] TR66A Standardized Ferroelectric Test System Operating Manual.
    [134] TF Analyzer 2000 FE-Module 操作手冊.
    [135] Bhadra P. Pokharel, Rajeev Ranjan, and Dhananjai Pandey, V. Siruguri and S. K. Paranjpe, “Rhombohedral superlattice structure and relaxor ferroelectric behavior of (Pb0.70Ba0.30)ZrO3 ceramics”, Appl. Phys. Lett. 74 (1999) 756.
    [136] B. P. Pokharel, M. K. Datta, and D. Pandey, “ Influence of calcinations and sintering temperatures on the structure of (Pb1-xBax)ZrO3”, J. Mat. Sci. 34 (1999) 691.
    [137] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices”, J. Vac. Sci. Technol. B 18, 1785 (2000).
    [138] S. B. Majumder, B. Roy, R. S. Katiyar, and S. B. Krupanidhi, “Effect of acceptor and donor dopants on polarization components of lead zirconate titanate thin films”, Appl. Phys. Lett., 79, (2001) 239.
    [139] K. Tominaga, A. Shirayanagi, T. Takagi, M. Okada, “Switching and Fatigue Characteristics of (Pb, La)(Zr, Ti)O3 Thin Films by Metalorganic Chemical Vapor Deposition”, Jpn J Appl Phys. 32 (1993) 4082.
    [140] Dimos, R.W. Schwartz, S.J. Lockwood, J. Am. Ceram. Soc. 77 (1994) 3000.
    [141] Al-Shareef, D. Dimos, J. Am. Ceram. Soc. 80 (1997) 3127.
    [142] D. Bolten, U. Bo¨ ttger, T. Schneller, M. Grossmann, O. Lohse, and R. Waser, “ Reversible and irreversible processes in donor-doped Pb(Zr,Ti)O3”, Appl. Phys. Lett. 77 (2000) 3830.
    [143] J. M. Benedetto, R. A. Moore and F. B. McLean, “Integrated Ferroelectrics”, 1 (1992) 195.
    [144] S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead Based Ferroelectric Capacitors for Low Voltage Non-Volatile Memory Applications”, Integrated Ferroelectrics 19 (1998) 159.
    [145] B. A. Tuttle, T. J. Garino, J. A. Volgt, T. J. Headley, D. Dimos and M. O. eatough, “Science and Technology of Electroceamic Thin Films”, 284 (Kluwer Academic, Dordrecht, 1995) 117.
    [146] X. Dai, Z. Xu and D. iehland, “Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics”, J. Appl. Phys. 79 (1996) 1021.
    [147] R. Ramesh and V. G. Keramidas, “ Metal-oxide heterostructures”, Annu. Rev. Mater. Sci 25 (1995) 647.
    [148] S. N. Ryoo, S. G. Yoon, and S. H. Kim, “Improvement in ferroelectric properties of Pb(Zr0.35Ti0.65)O3 thin films using a Pb2Ru2O7–x conductive interfacial layer for ferroelectric random access memory application”, Appl. Phys. Lett. 83, 2880 (2003).
    [149] J. M. Benedetto, R. A. Moore and F. B. McLean, “Effects of Operating Conditions on the Fast-Decay Component of the Retained Polarization in Lead Zirconate Titanate Thin Films”, J. Appl. Phys. 75 (1994) 1.
    [150] J. Kakalios, R. A. Street and W. B. Jackson, Phys. Rev. Lett. 59 (1987) 1037.
    [151] L. Kim, D. Jung, J. Kim, Y. S. Kim, and J. Lee, “Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity”, Appl. Phys. Lett. 82, (2003) 2118.
    [152] H. C. Li, W. Si, R. L. Wang, Y. Xuan, B. T. Liu, and X. X. Xi, Mater. Sci. Eng., B 56, 218 (1998).
    [153] A. Del Vecchio, L. Mirenghi, L. De Caro, L. Tapfer, C. Aruta, G. Petrocelli, and G. Balestrino, “Structural ordering and chemical configuration of Ba-based infinite-layer superlattices”, Appl. Phys. Lett., 82 (1997) 5465.
    [154] Y. Ishibashi, N. Ohashi, and T. Tsusumi, “Structural Refinement of X-Ray Diffraction Profile for Artificial Superlattices “, Jpn. J. Appl. Phys. 39, 186 (2000).
    [155] J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, “Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices”, Appl. Phys. Lett. 80, 3581 (2002).
    [156] 劉勁麟, “氧化物電極上製備鐵電記憶體應用之PZT薄膜的研究”, 博士論文 (2002), 清華大學
    [157] 梁元彰, “磊晶BaTiO3/LaNiO3人工超晶格特性之研究”, 博士論文 (2004), 清華大學
    [158] A. Visinoiu, M. Alexe, H. N. Lee, D. N. Zakharov, A. Pignolet, D. Hesse, and U. Gösele, “Initial growth stages of epitaxial BaTiO3 films on vicinal SrTiO3 (001) substrate surfaces”, J. Appl. Phys. 91, (2002) 10157.
    [159] W. C. Goh, S. Y. Xu, S. J. Wang, and C. K. Ong, “Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate”, J. Appl. Phys. 89, (2002) 4497.
    [160] M. P. Moret, J. J. Schermer, F. D. Tichelaar, E. Aret and P. R. Hageman, “Structure and morphology of epitaxial PbZrO3 films grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 92, (2002) 3947.
    [161] H. Maiwa, S. H. Kim, and N. Ichinose, “ Temperature dependence of the electrical and electromechanical properties of lead zirconate titanate thin films”, Appl. Phys. Lett. 83, 4396 (2003).
    [162] S. S. N. Bharadwaja, and S. B. Krupanidhi, “Backward switching phenomenon from field forced ferroelectric to antiferroelectric phases in antiferroelectric PbZrO3 thin films”, J. Appl. Phys. 89, 4541 (2001).
    [163] Isaku Kanno, Shigenori Hayashi, Masatoshi Kitagawa, Ryouichi Takayama, and Takashi Hirao, “Antiferroelectric PbZrO3 thin films prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 66, 145 (1995).
    [164] Jiwei Zhai, Y. Yao, X. Li, T. F. Hung, Z. K. Xu, Haydn Chen, Eugene
    V. Colla, and T. B. Wu, “Dielectric properties of oriented PbZrO3 thin films grown by sol-gel Process”,J. Appl. Phys. 92, 3990 (2002).
    [165] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure”, J. Appl. Phys. 91, 2290 (2002).
    [166] T. Ikeda, J. Phys. Soc. Jpn., 14, (1959) 168.
    [167] G. A. Smolenskii and V. A. Isupov, Dokl. Akad. Nauk SSSR, 8, (1954) 1375
    [168] V. I. Frisberg and B. N. Rolov, Izv. Akad. Nauk SSSR, Ser. Fiz., 28, (1964) 649.
    [169] F. Xu, S. T. Mckinstry, W. Ren, B. Xu, Z.-L. Xie, and K. J. Hemker, “Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films”, J. Appl. Phys. 89, 1336 (2001).
    [171] R. R. Metha, B. D. Silverman, and J. T. Jacobs, “Depolarization fields in thin ferroelectric films”, J. Appl. Phys. 44, 3379 (1973).
    [172] J. Y. Tseng and T. B. Wu, Mater. Chem. Phys. 88, 433 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE