簡易檢索 / 詳目顯示

研究生: 許廷豪
Shiu, Ting Hao
論文名稱: 分切合整數位控制並聯不斷電系統
D-Σ Digital Control for Paralleled UPS System
指導教授: 吳財福
Wu, Tsai Fu
口試委員: 羅有綱
Lo, Yu Kang
江炫樟
Chiang, Hsuang Chang
鄭博泰
Cheng, Po Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 三相四線式換流器不斷電系統分切合整數位控制正弦脈波寬度調變
外文關鍵詞: three-phase four-wire inverter, uninterruptible power supply, D-Σ digital control, sinusoidal pulse width modulation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用控制方法結合正弦脈波寬度調變(SPWM)與分切合整數位控制(D-Σ Digital Control),以實現半橋三相四線式換流器模組並聯系統。相較於傳統類比控制,數位控制在系統功能的實現相對容易,能減少硬體電路的使用並且降低電路的複雜性,其中分切合整數位控制透過控制器的設計,抵消系統變化參數如直流鏈電壓、切換週期以及電感值變化等對受控體的影響,最後得到開關責任比率控制法則。本論文首先推導分切合整數位控制法,並且說明電路動作原理,最後將所得開關責任比率以通式表示,使其在軟體上容易實現。在電路實作方面,本研究利用數位控制的優勢,預先將電感值所對應電流變化儲存於微控制器內部,以利微控制器每週期調整迴路增益。
    本研究主要貢獻為採用分切合整數位控制法,免除傳統abc–dq座標軸轉換,避免繁複的運算量與冗長的計算時間。此外,將直流鏈電壓變動量與電感值變化納入控制法則,可允許寬廣的電感值變化,有效縮小電感鐵芯尺寸與降低鐵芯損失。在均流控制方面,換流器模組採用負載阻抗估測法,藉由電壓與電流回授訊號,直接計算所需輸出電感電流變化量,並且平均分配至運轉中模組以達到均流目的,因此不需要外部中央控制器調節穩壓與均流。最後,本研究中並聯系統由三部三相四線式換流器模組所組成,經由模擬與實測結果驗證本論文所使用控制方法,可達到穩定輸出三相弦波電壓與平均分配電流。


    This thesis presents an SPWM-based division-summation (D-Σ) digital control for a three-phase parallel-connection uninterruptible power supply (UPS) system. Compared to analog control, it is easier to implement digital control to achieve system functions, which can minimize circuit complexity and reduce the volume of hardware circuits at the same time. A controller with the D-Σ digital control is designed to cancel the variation effects of dc-bus voltage, switching period and inductance. This study will derive D-Σ digital control laws first and express them in general forms for readily software programming. In the circuit implementation, the inductances corresponding to various inductor currents were measured at the start-up and stored in the controller for scheduling loop gain cycle by cycle.
    This research adopts D-Σ digital control avoiding conventional abc to dq frame transformation so that the calculation process can be significantly simplified. In the meantime, the variation of dc-bus voltage and inductance are taken into account in the control-law derivation, which allows wide inductance variation and reduces the core size accordingly. From the perspective of current sharing, the paralleled inverters control the variation of inductor currents based on voltage and current feedback signals directly and the inverters operating in parallel share them equally. Thus, there is no need to have an external controller to achieve output voltage regulation and equal current distribution. Finally, the paralleled system consisting of three three-phase inverters has been simulated and implemented to verify the feasibility of the proposed control scheme.

    總目錄 誌謝 i 摘要 ii Abstract iii 總目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 3 1-2-1 三相換流器簡介 4 1-2-2 不斷電系統運轉架構簡介 7 1-2-3 模組並聯運轉分析與控制方法 10 1-3 論文大綱 16 第二章 換流器架構與並聯控制方法 17 2-1 單模組換流器架構 17 2-2 換流器動作原理 18 2-3 傳統並聯均流控制方法 21 2-3-1 主動均流控制法 22 2-3-2 電壓垂降法 23 2-4 負載阻抗估測法 26 第三章 控制韌體規劃 33 3-1 系統韌體架構 33 3-2 微控制器簡介 34 3-3 控制流程規劃 36 3-3-1 系統主程式 37 3-3-2 類比/數位中斷副程式 38 第四章 換流器周邊電路 40 4-1 輔助電源電路 40 4-1-1 返馳式轉換器 40 4-1-2 PWM控制IC UC3843 41 4-2 電壓箝位電路 42 4-3 精密全波整流電路 43 4-4 直流鏈電壓回授電路 44 4-5 交流側電壓回授電路 45 4-6 電感電流回授電路 46 4-7 開關驅動隔離電路 47 4-8 硬體保護電路 49 第五章 系統模擬與實測驗證 51 5-1 電氣規格與選用元件 51 5-2 實務考量 52 5-2-1 電感值變化 52 5-2-2 開關死區補償 54 5-2-3 輸出電壓同步 56 5-2-4 載波同步 59 5-2-5 電流分配不均 62 5-3 模擬波形與實測結果 65 5-3-1 單部換流器模組 67 5-3-2 三部換流器模組並聯 75 5-3-3 負載變動實測波形 81 5-4 損耗分析 85 第六章 結論與未來研究方向 88 6-1 結論 88 6-2 未來研究方向 89 參考文獻 91

    [1] 張鴻鈞,不平衡負載之三相不斷電系統研製,國立台灣科技大學電機工程研究所碩士論文,民國91年。
    [2] 蕭朝仁,數位控制太陽能發電系統模組並聯運轉之設計與研製,國立雲林科技大學電機工程研究所碩士論文,民國89年。
    [3] 何嘉偉,具冗餘及熱插拔功能之多模組換流器並聯系統研製,國立中正大學電機工程研究所碩士論文,民國93年。
    [4] M. B. de Rossiter Corrêa, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “A General PWM Strategy for Four-Switch Three-Phase Inverters,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1618-1627, Nov. 2006.
    [5] R. Wang, J. Zhao, and Y. Liu, “DC-Link Capacitor Voltage Fluctuation Analysis of Four-Switch Three-Phase Inverter,” IECON 2011–37th Annual Conference on IEEE Industrial Electronics Society, pp. 1276-1281, Nov. 2011.
    [6] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Application of Four-Switch-Based Three-Phase Grid-Connected Inverter to Connect Renewable Energy Source to a Generalized Unbalanced Microgrid System,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1204-1215, March 2013.
    [7] M. S. Diab, A. Elserougi, A. M. Massoud, A. S. Abdel-Khalik, and S. Ahmed, “A Four-Switch Three-Phase SEPIC-Based Inverter,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4891-4905, Sept. 2015.
    [8] N.-V. Nho, M.-B. Kim, G.-W. Moon, and M.-J. Youn, “A Novel Carrier Based PWM Method In Three Phase Four Wire Inverters,” the 30th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 1458-1462, Nov. 2004.
    [9] S.-Y. Park, J.-S. Lai, and W.-C. Lee, “An Easy, Simple, and Flexible Control Scheme for a Three-Phase Grid-Tie Inverter System,” 2010 IEEE Energy Conversion Congress and Exposition, pp. 599-603, Sept. 2010.
    [10] E. Isen and A. F. Bakan, “Comparison of Hysteresis Controlled Three-Wire and Split-Link Four Grid Connected Inverters,” 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), , vol. 59, no. 11, pp. 727-730, May 2011.
    [11] C. Qiao and K. M. Smedley, “Three-phase Grid-Connected Inverters Interface for Alternative Energy Sources with Unified Constant-frequency Integration control,” Industry Application Conference, 2001, 36th IAS Annual Meeting Conference Record of the 2001 IEEE, vol. 4, pp. 2675-2682, Sept. 2001.
    [12] J. Rodríguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortés, and U. Ammann, “Predictive Current Control of a Voltage Source Inverter,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 495-503, Feb. 2007.
    [13] P. Cort´es and J. Rodr´ıguez, “Three-Phase Inverter with Output LC Filter Using Predictive Control for UPS Applications,” 2007 European Conference on Power Electronics and Applications, pp. 1-7, Sept. 2007.
    [14] R. Zhang, V. H. Prasad, D. Boroyevich, and F. C. Lee, “Three-Dimensional Space Vector Modulation for Four-Leg Voltage-Source Converters,” IEEE Transactions on Power Electronics, vol. 17, no. 3, pp. 314-326, May 2002.
    [15] I. Vechiu, O. Curea, H. Camblong, S. Ceballos, and J. L. Villate, “Digital Control of a Three-Phase Four-Leg Inverter under Unbalanced Voltage Conditions” 2007 European Conference on Power Electronics and Applications, pp. 1-10, Sept. 2007.
    [16] 蔡國猷,不斷電電源裝置(UPS.CVCF)指引,建興出版社,民國86年。
    [17] V. Monteiro, B. Exposto, J. C. Ferreira, and J. L. Afonso, “Improved Vehicle-to-Home (iV2H) Operation Mode: Experimental Analysis of the Electric Vehicle as Off-Line UPS,” IEEE Transactions on Smart Grid, vol. PP, no. 99, pp.1-10, March 2016.
    [18] M. A. Abusara, J. M. Guerrero, and S. M. Sharkh, “Line-Interactive UPS for Microgrids,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, March 2014.
    [19] Y.-T. Feng, C.-H. Lai, S.-Y. Lin, E. Chen, and Y.-Y. Tzou, “DSP-Based Fully Digital Control of an On-Line UPS,” 2001 4th IEEE International Conference on Power Electronics and Drive Systems, 2001. Proceedings, vol. 1, pp. 301-305, Oct. 2001.
    [20] E.-H. Kim, J.-M. Kwon, and B.-H. Kwon, “Transformerless three-phase on-line UPS with high performance,” IET Power Electronics, vol. 2, no. 2, pp. 103-112, March 2009.
    [21] D. Shanxu, M. Yu, X. Jian, K. Yong, and C. Jian, “Parallel Operation Control Technique of Voltage Source Inverters in UPS,” 1999 PEDS’ Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, vol. 2, pp. 883-887, July 1999.
    [22] W.-C. Lee, T.-K. Lee, S.-H. Lee, K.-H. Kim, D.-S. Hyun, and I.-Y. Suh, “A Master and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings,” Applied Power Electronics Conference and Exposition, 2004. APEC’04 19th Annual IEEE, vol. 1, pp. 456-462, 2004.
    [23] K. Siri, C. Q. Lee, and T.-F. Wu, “Current Distribution Control for Parallel Connected Converters PartⅠ,” IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 3, pp. 829-840, July 1992.
    [24] J.-F. Chen and C.-L. Chu, “Combination Voltage-Controlled and Current-Controlled PWM Inverters for UPS Parallel Operation,” IEEE Transactions on Power Electronics, vol. 10, no. 5, pp. 547-558, Sept. 1995.
    [25] M. Prodanovic, T. C. Green, and H. Mansir, “A Survey of Control Methods for Three-Phase Inverters in Parallel Connection,” 2000. 8th International Conference on Power Electronics and Variable Speed Drives, pp. 472-477, Sept. 2000.
    [26] H. Shan, Y. Zhang, M. Yu, Y. Kang, Y. Liu, M. Yin, and H. Li, “The Novel strategy of Restraining Circulating Currents in distributed-logical-control on parallel inverter system,” 2009. ICEMS 2009. International Conference on Electronical Machines and Systems, , pp. 1-5, Nov. 2009.
    [27] Y.-K. Chen, Y.-E. Wu, T.-F. Wu, and C.-P. Ku, “ACSS for Paralleled Multi-Inverter Systems with DSP-Based Robust Controls,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 3, pp. 1002-1015, July 2003.
    [28] S. Luo, Z. Ye, R.-L. Lin, and F. C. Lee, “A Classification and Evaluation of Paralleling Methods for Power Supply Modules,” Power Electronics Specialists Conference, 1999. PESC 99 30th Annual IEEE, vol. 2, pp. 901-908, July 1999.
    [29] 朱介正,適用於不同容量變流器之並聯控制之研究,國立高雄應用科技大學電機工程研究所碩士論文,民國96年。
    [30] S. J. Chiang and J. M. Chang, “Parallel Control of the UPS Inverters with Frequency-dependent Droop Scheme,” Power Electronics Specialists Conference, 2001. PESC 2001 IEEE 32nd Annual, vol. 2, pp. 957-961, June 2001.
    [31] B. T. Irving and M. M. Jovanovic, “Analysis, Design, and Performance Evaluation of Droop Current-Sharing Method,” Applied Power Electronics Conference and Exposition, 2000. APEC 2000. 15th Annual IEEE, vol. 1, pp. 235-241, Feb. 2000.
    [32] J. M. Guerrero, L. G. de Vicuña, J. Matas, M. Castilla, and J. Miret, “A Wireless Controller to Enhance Dynamic Performance of Parallel Inverters in Distributed Generation Systems,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1205-1213, Sept. 2004.
    [33] Renesas, RX62T Group Datasheet Rev. 1.10, Apr. 2011.
    [34] Fairchild, “UC3843 datasheet,” 2002.
    [35] LEM, “LAX 100-NP datasheet”.
    [36] Philips Semiconductor, “74HC244 datasheet,” 1990.
    [37] Chang Sung Corporation(CSC), “Magnetic powder cores,” www.changsung.com, ver. 13.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE