研究生: |
王俊荃 Wang, Ching Chen |
---|---|
論文名稱: |
本質非晶矽鍍膜製程之矽烷/氫氣電漿模擬研究 Analysis of silane/hydrogen discharge by computer simulation applied to intrinsic amorphous silicon thin film deposition |
指導教授: |
柳克強
Leou, Keh-Chyang, |
口試委員: |
王敏全
陳信良 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | HIT 、異質接面太陽能電池 、矽薄膜 、電漿模擬 |
外文關鍵詞: | HIT, Heterojunction solar cell, silicon thin film, plasma simulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討沉積本質非晶矽之電漿在製程中對薄膜特性的影響,研究以模擬為主,再以實驗配合相互驗證,模擬藉由CFD-ACE+流體模型軟體研究SiH4/H2電漿,以了解電漿特性與活性粒子的密度及分佈情況,並且探討在不同功率與H2稀釋比下對於電漿特性和活性粒子例如H、SiH3、SiH2與高階矽烷粒子Si4H9生成量之影響。模擬第一部分使用兩種反應式模型進行模擬並比較差異,修改模型為原有模型另外再加入H物種相關反應式,模擬結果顯示修改模型的電漿特性,電子密度與電漿電位都是較低,而活性粒子密度則是相反;第二部分,使用沉積非晶矽與微晶矽電漿之參數進行模擬並比較兩者間的電漿特性差異,前者的電子密度與電漿電位與活性粒子及高階矽烷粒子都較低,可知沉積非晶矽的電漿環境會減少因高階矽烷粒子而產生的微孔洞;第三部分結果顯示電漿電位隨功率提高而上升,但不受氫氣稀釋比影響,而SiH2/SiH3通量密度比不受功率影響,但會隨著氫氣稀釋比增加而上升,提高功率與H2稀釋比則都會使Si4H9/SiH3增加,綜合以上結果沉積非晶矽薄膜之電漿使用低功率及低氫氣稀釋比能減少離子轟擊對薄膜的損害以及減少微孔洞產生的機率。
而實驗方面,使用PECVD以模擬使用的參數來沉積非晶矽薄膜,過程使用OES記錄電漿光譜,在改變H2稀釋比下,會發現單位時間HSiH*光譜變化率在較高H2稀釋比的電漿環境下提升速率較快;在薄膜微孔洞分析中,模擬與光譜分析結果都指出提高H2稀釋比會增加高階矽烷粒子密度,實驗結果中較低H2稀釋比亦有相同的變化趨勢,但是較高H2稀釋比則開始降低
The purpose of this study is to investigate the influence of the plasma property on the thin film property in intrinsic amorphous silicon thin film deposition processes. This study is major on simulation, also do the experiment mutual authentication. This study applies two dimensional fluid model in ESI CFD-ACE+ to simulate SiH4/H2 plasma. Though simulation, we can understand the basic qualities of plasma and the density and distribution of radicals, and analyze the variations of different powers and H2 dilution ratios in plasma. First part use two model of reaction database to simulation, the revise model is which adding some reactions of hydrogen species into the original model. The plasma properties of the revise model have lower electron density and plasma potential, whereas radicals higher than the original model. Second part is comparison plasma properties of two kind of plasma which are used to deposited amorphous silicon and microcrystalline silicon thin film. In simulation result, electron density, plasma potential, the radicals and the high-order silane species of the former are lower than the latter. This results means the environment of deposition amorphous silicon will reduce the production probability of microstructure produced by higher-order silane species. In last part simulation result, plasma potential increase as power increase, but has no correlation with the hydrogen dilution ratio. On the other hand, Si4H9/SiH3 flux ratio increase increases as power and hydrogen dilution ratio increases. Based on the above result ,using lower power and hydrogen dilution ratio will decrease the damage of ion bombardment on silicon thin film and the production probability of microstructure.
In experiment studies, optical emission spectroscopy was employed for analysis in PECVD plasma discharge for a-Si:H thin films. In different hydrogen dilution ratio condition, higher hydrogen dilution ratio the have higher time variant H/SiH* increase rate. In microstructure study, simulation and OES analysis result shows same trend that density of high-order silane species increase while hydrogen dilution ratio increase. The experiment result at lower hydrogen dilution ratio also shows the same trend whereas decrease at higher hydrogen dilution ratio.
[1] A. Matsuda, "Microcrystalline silicon," Journal of Non-Crystalline Solids, vol. 338-340, pp. 1-12, 2004.
[2] M. Tsuda, S. Oikawa, and K. Sato, "On the primary process in the plasma-chemical and photochemical vapor-deposition from silane mechanism of the radiative species si-star(1p) formation," Journal of Chemical Physics, vol. 91, pp. 6822-6829, Dec 1989.
[3] A.Matsuda,"formation kinetics and control of microcrystallite in mu-c-si-h from glow-discharge plasmA," Journal of Non-Crystalline Solids, vol. 59-6, pp. 767-774, 1983
[4] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," Journal of Applied Physics, vol. 113, p. 234310, 2013.
[5] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma," Applied Physics Letters, vol. 77, pp. 2828-2830, Oct 2000.
[6] A. Bandopadhyay, A. Banerjee, and T. Debroy, "Nitrogen activity determination in plasmas," Metallurgical Transactions B-Process Metallurgy, vol. 23, pp. 207-214, Apr 1992.
[7] V. Massereau-Guilbaud, I. Geraud-Grenier, and A. Plain, "Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power," Journal of Applied Physics, vol. 106, Dec 2009.
[8] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," Plasma Physics and Controlled Fusion, vol. 40, pp. 1035-1056, Jun 1998.
[9] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials, vol. 2, Sep 2001.
[10] Y.-S. Cho, "Effect of Plasma Radical Composition in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells," IEEE TRANSACTIONS ON PLASMA SCIENCE, vol. 42, 2014.
[11] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," Journal of Applied Physics, vol. 113, p. 234310, 2013.
[12] Aman-ur-Rehman, H. C. Kwon, W. T. Park, and J. K. Lee, "A study of the role of various reactions on the density distribution of hydrogen, silylene, and silyl in SiH4/H2 plasma discharges," Physics of Plasmas, vol. 18, p. 093502, 2011.
[13] H. Fujiwara and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells," Applied Physics Letters, vol. 90, p. 013503, 2007.
[14] S. Danko, D. Bluhm, V. Bolsinger, W. Dobrygin, O. Schmidt, and R. P. Brinkmann, "A global model study of silane/hydrogen discharges," Plasma Sources Science and Technology, vol. 22, p. 055009, 2013.
[15] B. J. Yan, J. Yang, and S. Guha, "Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates," Journal of Vacuum Science & Technology A, vol. 30, p. 10, Jul 2012.
[16] C.-H. H. Yun-Shao Cho, Shui-Yang Lien, Dong-Sing Wuu, Pin Han, and a. J.-H. W. Chia-Fu Chen, "Effect of Plasma Radical Composition," IEEE Transactions On Plasma Science, vol. 42, 2014.
[17] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-sections, rate constants and transport coefficients in silane plasma chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996 1996.
[18] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1 1997.
[19] O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, "Two-dimensional modelling of SiH4-H2 radio-frequency discharges for a-Si : H deposition," Plasma Sources Science & Technology, vol. 7, pp. 348-358, Aug 1998.
[20] M. J. Kushner, "A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor-deposition of amorphous-silicon," Journal of Applied Physics, vol. 63, pp. 2532-2551, Apr 15 1988.
[21] S. J. Buckman and A. V. Phelps, "Vibrational-excitation of d2 by low-energy electrons," Journal of Chemical Physics, vol. 82, 1985.
[22] M. Kurachi and Y. Nakamura, "Electron collision cross-sections for the monosilane molecule," Journal of Physics D-Applied Physics, vol. 22, pp. 107-112, Jan 1989.
[23] E. Krishnakumar and S. K. Srivastava, "Ionization cross-sections of silane and disilane by electron-impact," Contributions to Plasma Physics, vol. 35, pp. 395-404, 1995 1995.
[24] J. Perrin, J. P. M. Schmitt, G. Derosny, B. Drevillon, J. Huc, and A. Lloret, "Dissociation cross-sections of silane and disilane by electron-impact," Chemical Physics, vol. 73, pp. 383-394, 1982 1982.
[25] Cross Sections for Electron Collisions with Hydrogen Molecules, YOON et al., J. Phys. Chem. Ref. Data, 2008
[26] Kimura and H. Kasugai et al , Properties of inductively coupled rf Ar / H2 plasmas: Experiment and global model, T., J. Appl. Phys., 2010
[27] A T Hjartarson et al , Low pressure hydrogen discharges diluted with argon explored using a global model, Plasma Sources Sci. Technol.,2010
[28] M B Shah, D S Elliott and H B Gilbody, Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact, J. Phys. B: At. Mol. Phys., 1987
[29] R. C. Wetzel et al, Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, 1986
[30] Me´ndez, et al., Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas, J. Phys. Chem., 2006
[31] Hybrid Monte Carlo ,fluid modeling network for an argony hydrogen direct current glow discharge., A. Bogaerts, R. Gijbels, Spectrochimica Acta Part B, 2002
[32] 古傅偉,Study of a capacitively coupled silane/hydrogen discharge by omputer simulation – physical/chemical mechanism and parametric analysis,2011