簡易檢索 / 詳目顯示

研究生: 邱翊瑋
I-Wei Chiu
論文名稱: 多用戶正交分頻多工系統之區塊式子載波及位元分配演算法
Blockwise Subcarrier and Bit Allocation Algorithms for Multiuser OFDM Systems
指導教授: 王晉良
Chin-Liang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 61
中文關鍵詞: 子載波區塊式正交分頻多工
外文關鍵詞: subcarrier, blockwise, OFDM
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多用戶正交分頻多工(multiuser orthogonal frequency division multiplexing , MU-OFDM)系統是一個非常有效率的傳輸技術,能有效的改善系統性能及增加頻譜使用效率。在多用戶正交分頻多工系統一個重要的問題是基地台如何根據使用者各自不同的通道特性,動態的分配子載波、位元及功率來增加系統的性能。傳統的子載波及位元分配演算法在分配子載波及位元是以載波為單位,這樣將會造成很高的計算複雜度。因此,已有其他文獻提出以鄰近子載波分區塊的方法來降低子載波及位元分配的計算複雜度,但是以此種方法所使用的平均訊雜比值來計算區塊內的位元及功率分配,將會造成非常嚴重的性能損耗。有別於傳統的子載波及位元分配演算法及區塊式子載波及位元分配演算法,我們提出了一種新的區塊式子載波及位元分配演算法來降低整個系統的計算複雜度及性能損耗。我們將此演算法分成兩個步驟:第一步,在區塊式子載波分配部份,我們根據所提出的通道增益值分類方法將子載波分群,目的是將通道增益值差不多的子載波分配到同一個區塊,來降低做區塊式位元及功率分配所造成的性能損耗;第二步,在區塊式位元及功率分配部份,我們也提出了一個根據最小平方誤差準則所求出的區塊式訊雜比值來降低整體的傳輸功率損失。
    經由電腦模擬及複雜度比較,我們可以看出本篇論文所提出的區塊式子載波及位元分配演算法和根據最小平方誤差準則所求出的區塊式訊雜比值可以有效的降低計算複雜度及性能損耗。


    Multiuser orthogonal frequency division multiplexing (MU-OFDM) is a promising technique for achieving high spectral efficiency in future wireless communication systems. A key issue in MU-OFDM system is the dynamic subcarrier, bit, and power allocation among users sharing the channel. Conventional subcarrier and bit allocation algorithms assign subcarriers and bits based on “subcarrier to subcarrier” mode. It will cause large computational complexity. Therefore, some papers have proposed a blockwise subcarrier and bit allocation algorithms based on adjacent subcarriers to reduce the computational complexity. But this kind of blockwise method will cause large performance degradation due to use the average SNR value to calculate blockwise bit and power allocation. Differ from these two subcarrier and bit allocation algorithms, we propose a novel blcokwise subcarrier and bit allocation algorithm to reduce the computational complexity and performance loss. We divide the proposed blockwise subcarrier and bit allocation algorithm into two steps: first, we bind the subcarriers to blocks based on the proposed channel level classification method; second, we also propose a novel signal-to-noise ratio (SNR) value based on least-squared (LS) criterion to reduce the performance loss caused by blockwise bit and power allocation,.
    From the simulation results and complexity comparisons, the proposed blockwise subcarrier, bit, and power allocation algorithm with LS-SNR value can largely decrease the computational complexity and the performance loss.

    Contents Abstract i Contents iii List of Figures v List of Tables vi Chapter 1 Introduction……………………………………………………….…1 1.1 Subcarrier, Bit, and Power Allocation Algorithms for Single user and Multiuser OFDM…………..……………...............................................................................2 1.2 Thesis Outline………..............................................................................................7 Chapter 2 Blockwise Subcarrier, Bit, and Power Allocation algorithms………………………………………………………………..…………8 2.1 System Model…………..……………..……....……...............................................8 2.2Conventional and Proposed Blockwise Subcarrier Allocation Algorithms…....................................................................................................10 2.2.1 Conventional Blockwise Subcarrier Allocation Algorithms Based on Adjacent Subcarriers..................................................................................10 2.2.2 Proposed Blockwise Subcarrier Allocation Algorithms Based on Channel Level Classification….................................................................................12 2.3 Blockwise Bit and Power Allocation Algorithm….…………………..………….15 2.3.1 An Optimal Bit and Power Allocation Algorithm.......................................15 2.3.2 Blockwise Bit and Powerr Allocation Algorithm........................................19 2.3.3 Proposed Block SNR Based on Least-Squared Solution.............................22 2.3.4 System Performance Margin………………..……………………...……..24 Chapter 3 Simulation Results and Complexity Comparisons……...…26 3.1 Simulation Results………………………………………….….………………....26 3.2 Complexity Comparisons.......................................................................................36 Chapter 4 Conclusions………………………………………………………….38 Bibliography……………………………………………………………...……….39

    Bibliography
    [1] A. R. Rofougaran, M. Rofoigaran, and A. Behzad, “Radios for next generation wireless networks,” in Proc. IEEE Radio and Wireless Conf. (RWS ’04), Atlanta, GA, Sept. 2004, pp. 1-4.
    [2] A. Bria, F. Gessler, O. Queseth, R. Stridh, M. Unbehaun, J. Wu, J. Zander, and M. Flament, “4th-generation wireless infrastructures: scenarios and research challenges,” IEEE Pers. Commun., vol. 8, pp. 25-31, Dec. 2001.
    [3] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000.
    [4] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Indianapolis: Sams, 2002.
    [5] P. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services,” IEEE J. Select. Areas Commun., vol. 9, no. 6, pp. 909-919, Aug. 1991.
    [6] P. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications,” IEEE J. Select. Areas Commun., vol. 9, no. 6, pp. 895-908, Aug. 1991.
    [7] R. B. Khandelwal, L. Li, and A. Dodson, “A policy engine for the OCAP monitor application,” in Proc. IEEE Consumer Commun. and Networking Conf. (CCNC ’04), Las Vegas, Nevada, Jan. 2004, pp. 633-635.
    [8] Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, WTS 300 401 v1.3.2, Sept. 2000.
    [9] Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, ETS 300 744 v1.3.2, Sept. 2000.
    [10] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE standard. 802.11, Aug. 1999.
    [11] Broadcasting Radio Access Networks (BRAN): Requirements and architectures for broadband fixed radio access networks, ETSI, TR 1001 177 v1.1.1, May 1998.
    [12] High Performance Radio Local Area Networks (HIPERLAN): Requirements and architectures for wireless ATM access and interconnection, ETSI, TR 101 031 v1.1.1, July 1997.
    [13] B. S. Krongold, K. Ramchandran, and D. L. Jone, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun., vol. 48, no. 1, pp. 23-27, Jan. 2000.
    [14] T. M. Cover and J. A. Thomas, Elements of Information Theory. NewYork: John Wiley & Sons, 1991.
    [15] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,” U.S. Patents Number 4,679,227, (July 1987), 4,731,816 (March 1988), and 4,833,796 (May 1989).
    [16] E. Lawrey, “Multiuser OFDM,” in Proc.1999 IEEE Int. Symp. on Signal Processing. and its Appl. (ISSPA ’99), Brisbane, Australia, vol. 2, Aug. 1999, pp. 761-764.
    [17] H. Rohling and R. Grunheid, “Performance comparison of different multiple access schemes for downlink of OFDM communication system,” in Proc. 1997 IEEE 47th Veh. Technol. Conf. (VTC ’97), Phoenix, AZ, May 1997, pp. 1365-1369.
    [18] R. Knopp and P. A. Humblet, “Information capacity and power control in single-cell multiuser communications,” in Proc. 1995 IEEE Int. Conf. Commun. (ICC ’95), Seattle, WA, June 1995, pp. 331-335.
    [19] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multicarrier OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
    [20] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Select. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
    [21] W. Rhee and J. M. Cioffi, “Increasing in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. 2000 IEEE 51th Veh. Technol. Conf. (VTC ’00), vol. 2, Tokyo, Japan, May 2000, pp. 1085-1089.
    [22] I. Kim, H. L. Lee, B. Kim, and Y. H. Lee, “On the use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM,” in Proc. 2001 IEEE Global Telecommun. Conf. (GLOBECOM ’01) , vol. 6, San Antonio, TX, Nov. 2001, pp. 3648-3652.
    [23] D. Kivanc and H. Liu, “Subcarrier allocation and power control for OFDMA,” in Conf. 2000 IEEE Signals, Systems and Computer, Asilomar, vol. 1, Nov. 2000, pp. 147-151.
    [24] C. Y. Wong, C. Y. Tsui, and Roger S. Cheng, “A real-time subcarrier allocation scheme for multiple access downlink OFDM transmission,” in Proc. IEEE Veh. Technol. Conf. (VTC ’99), Armsterdan, Netherlands, Sept. 1999, pp. 1124-1128.
    [25] X. Liang and J. Zhu, “An adaptive subcarrier allocation algorithm for multiuser OFDM system,” in Proc. IEEE Veh. Technol. Conf. (VTC ’03), Orlando, FL, Oct. 2003, pp. 1502-1506.
    [26] C.-L. Wang and Y.-S. Chang, “An optimal discrete loading algorithm for DMT modulation,” in Proc. of the 2001 World Multiconference Systems, Cybernetics and Informatics, vol. IV, Orlando, FL, July 2001, pp. 361-366.
    [27] J. Campello de Souza, “Discrete bit loading for multicarrier modulation systems,” Ph. D. dissertation, Stanford Univ., Palo Alto, CA, 1999.
    [28] S. Haykin, Communication System. 4th ed., New York: John Wiley & Sons, 2001.
    [29] J. Campello, “Practical bit loading for DMT,” in Proc. 1999 IEEE Int. Conf. Commun. (ICC ’ 99), Vancouver, Canada, June 1999, pp. 801-805.
    [30] L. M. C. Hoo, J. Tellado, and J. M. Cioffi, “Dual Qos loading algorithms for multicarrier systems,” in Proc. 1999 IEEE Int. Conf. Commun. (ICC ’99), Vancouver, Canada, June 1999, pp. 796-800.
    [31] J. Lee, R. V. Sonalkar, and J. M. Cioffi, “A multi-user rate and power control algorithm for VDSL,” in Proc. 2002 IEEE Global Telecommun. Conf. (GLOBECOM ’02), Taipei, Taiwan, Nov. 2002, pp. 1264-1268.
    [32] J. G. Proakis, Digital Communications. 3rd ed., New York: McGraw-Hill, 1995.
    [33] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-aided channel estimation by wiener filtering,” in Proc. 1997 IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP 1997) , Munich, Germany, vol. 3, April 1997, pp. 1845-1848.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE