簡易檢索 / 詳目顯示

研究生: 郭冠杰
Kuo, Kuan-Chieh
論文名稱: 應用於多細胞多天線網路之多群組機會式群播排程技術
Opportunistic Multicast Scheduling with Multiple Multicast Groups in Multicell MIMO Networks
指導教授: 洪樂文
Hong, Yao-Win Peter
口試委員: 李佳翰
吳仁銘
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 35
中文關鍵詞: 多細胞多天線網路群播機會式群播排程
外文關鍵詞: Multicell MIMO Networks, Multicast, Opportunistic Multicast Scheduling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們討論在多細胞多天線網路中利用傳送預先編
    碼(precoding)的機會式群播排程(opportunistic multicast
    scheduling)技術。在此系統中,基地台傳送訊號給所有指定的群體
    用戶,因此傳送速率將被最差的指定用戶所限制住。機會式群播排程
    在傳統中被用來在單播(unicast)與廣播(broadcast)之間取得平衡
    (tradeoff),但是在多群播環境下因為可以更進一步選擇部分的用戶
    來避免產生較大的干擾,因此能擁有更好的效果。我們假設所有基地
    台皆擁有要傳送給每群用戶的資料和連接到所有用戶的通道狀態訊
    息(channel state information)。此機會式群播排程和傳送預先編
    碼器根據兩種最佳化的準則來做設計: 最差的平均用戶吞吐量(the
    worst per-user throughput)和加權和吞吐量(weighted sum
    throughput)。當給定選擇用戶時,根據這兩個準則找出最佳的傳送
    預先編碼器的問題皆會是非凸面(non-convex)的最佳化問題,因此我
    們把問題推導成凸面可行性問題(convex feasibility problem),並
    且利用二分法收尋(bisection search)來解出答案。接著,我們在設
    法找出最佳的選擇用戶。然而,此問題本質上是個排列組合問題,當
    用戶數目增加的時候,這個問題的複雜度會變得相當棘手。因此,我
    們提出了一個迭代選擇用戶演算法(iterative user selection
    algorithm),用來降低收尋的複雜度。最後,我們利用電腦模擬來顯
    示我們所提出方法的效能。


    The use of opportunistic multicast scheduling (OMS) with transmit precoding is examined in
    this work for multicell MIMO systems with multiple multicast groups. In multicast systems,
    data transmitted by the base-stations (BSs) must be received by all intended receivers and,
    thus, the transmission rate is limited by the the worst intended receiver. OMS traditionally
    has been used to optimize the tradeoff between unicast and broadcast, but can have an even
    larger impact in systems with multiple multicast groups since users can be further selected in
    this case to avoid interference. Here, we assume that the base-stations (BSs) have knowledge
    of the data intended for all groups as well as the channel state information (CSI) of all links.
    The OMS and transmit precoder are designed based on two optimization criteria: the worst
    per-user throughput and the weighted sum throughput. Given the user selection, the problem
    of finding the optimal transmit precoder under both criteria are non-convex and, thus, are
    alternatively formulated as convex feasibility problems, which are solved by bisection search.
    Then, an outer optimization is performed to solve for the optimal user selection. However,
    since the problem is combinatorial in nature, the complexity of the problem can be intractable
    for systems with large number of users. Hence, iterative user selection (IUS) algorithms are
    proposed to reduce the complexity of the search. The effectiveness of the proposed schemes
    are demonstrated through computer simulations.

    Abstract i Contents ii 1. Introduction 2. System Model 2.1 Problem Formulation 2.2 Optimized Transmit Precoder 2.3 Opportunistic Multicast Scheduling (OMS) 3. Opportunistic Multicast Scheduling with the Worst Per-User Throughput Criterion 3.1 Design the Optimal Transmit Precoder 3.2 Find the Optimal User Selection 3.3 Complexity Reduction 4. Opportunistic Multicast Scheduling with Weighted Sum Throughput Criterion 4.1 Design the Optimal Transmit Precoder 4.2 Find the Optimal User Selection 5. Numerical Simulation 6. Conclusion

    [1] U. C. Kozat, “On the throughput capacity of opportunistic multicasting with erasure
    codes,” in The IEEE 27th Conference on Computer Communications INFOCOM, Apr.
    2008, pp. 520–528.

    [2] T.-P. Low, M.-O. Pun, Y.-W. P. Hong, and C.-C. J. Kuo, “Optimized opportunistic
    multicast scheduling (oms) over wireless cellular networks,” IEEE Transactions on
    Wireless Communications, vol. 9, no. 2, pp. 791–801, Feb. 2010.

    [3] P. K. Gopala and H. E. Gamal, “Opportunistic multicasting,” in Conference Record of
    the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Nov. 2004,
    pp. 845–849.

    [4] ——, “On the throughput-delay tradeoff in cellular multicast,” in International Confer-
    ence on Wireless Networks ,Communications and Mobile Computing,, vol. 2, Jun. 2005,
    pp. 1401–1406.

    [5] D. J. C. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol. 152, no. 6,
    pp. 1062–1068, Dec. 2005.

    [6] T.-P. Low, P.-C. Fang, Y.-W. P. Hong, and C.-C. J. Kuo, “Multi-antenna multicasting
    with opportunistic multicast scheduling and space-time transmission,” in IEEE Global
    Telecommunications Conference (GLOBECOM), Dec. 2010, pp. 1–5.

    [7] T. M. Cover and J. A. Thomas, Elememts of Information Theory. John Wiley and
    Sons, Inc., 1991.

    [8] T.-P. Low, Y.-W. P. Hong, and C.-C. J. Kuo, “Opportunistic multicast scheduling with
    multiple multicast groups,” in IEEE Global Telecommunications Conference (GLOBE-
    COM), Dec. 2011, pp. 1–5.

    [9] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beamforming for physicallayer
    multicasting,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2239–
    2251, Jun. 2006.

    [10] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of service and max-min fair
    transmit beamforming to multiple cochannel multicast groups,” IEEE Transactions on
    Signal Processing, vol. 56, no. 3, pp. 1268–1279, Mar. 2008.

    [11] N. Bornhorst and M. Pesavento, “An iterative convex approximation approach for transmit
    beamforming in multi-group multicasting,” in IEEE 12th International Workshop
    on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2011, pp.
    426–430.

    [12] A. Schad and M. Pesavento, “Max-min fair transmit beamforming for multi-group multicasting,”
    in International ITG Workshop on Smart Antennas (WSA), Mar. 2012, pp.
    115–118.

    [13] M. K. Kaliszan, E. Pollakis, and S. S. Stanczak, “Efficient beamforming algorithms for
    mimo multicast with application-layer coding,” in IEEE International Symposium on
    Information Theory Proceedings (ISIT), Aug. 2011, pp. 928–932.

    [14] M. Kaliszan, E. Pollakis, and S. Stanczak, “Multigroup multicast with application-layer
    coding: Beamforming for maximum weighted sum rate,” in IEEE Wireless Communi-
    cations and Networking Conference (WCNC), Apr. 2012, pp. 2270–2275.

    [15] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell mimo
    cooperative networks: A new look at interference,” IEEE Journal on Selected Areas in
    Communications, vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

    [16] H. Zhang and H. Dai, “Cochannel interference mitigation and cooperative processing
    in downlink multicell multiuser mimo networks,” EURASIP J. Wireless Commun. Net-
    working, vol. 2004, no. 2, pp. 222–235, Dec. 2004.

    [17] E. Bj¨ornson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative multicell precoding:
    Rate region characterization and distributed strategies with instantaneous and
    statistical csi,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4298–4310,
    Aug. 2010.

    [18] H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell multi-antenna
    wireless system,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp.
    1748–1759, May 2010.

    [19] Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, “Coordinated beamforming for miso interference
    channel: Complexity analysis and efficient algorithms,” IEEE Transactions on Signal
    Processing, vol. 59, no. 3, pp. 1142–1157, Mar. 2011.

    [20] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
    version 1.21,” ../../cvx, Apr. 2011.

    [21] J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, “Optimal distributed beamforming for miso
    interference channels,” IEEE Transactions on Signal Processing, vol. 59, no. 11, pp.
    5638–5643, Nov. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE