簡易檢索 / 詳目顯示

研究生: 蔡一葦
Yi-Wei Tsai
論文名稱: 多共振腔系統、藍寶石X光共振腔及建置時間解析繞射系統
Multi-cavity systems, sapphire X-ray resonators, and the construction of time-resolved X-ray diffraction system
指導教授: 張石麟
Shih-Lin Chang
口試委員: 湯茂竹
Mau-Tsu Tang
黃玉山
Yu-Shan Huang
蘇雲良
Yun-Liang Soo
李英裕
Yin-Yu Lee
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: X-ray resonatortime-resolved X-ray diffractionbackward diffractioncavity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要包含三個部分,多共振腔系統、藍寶石X光共振腔及建置時間解析繞射系統,並對各部分理論基礎、實驗架構與實驗結果等,依序介紹。
    在X光共振腔研究中,我們嘗試將多組共振腔集合成一多共振腔系統。而由兩組共振腔組合而成之三單晶板共振腔,我們成功量測到三單晶板共振腔之等效共振能譜,該能譜於背向繞射發生之區域間,僅包含單一共振鋒,且其鋒寬僅 0.79 meV。
    由於藍寶石單晶擁有優於矽單晶之繞射特性,因此我們嘗試了藍寶石單晶X光共振腔之實驗。雖然藍寶石單晶內部的晶體缺陷以及共振腔外型的偏差造成藍寶石共振腔之共振效率下降,我們還是成功的量測到藍寶石共振腔的共振能譜,而所對應之 finesse 值約為 1.92。
    而本文章亦對已建置完成之時間解析繞射實驗系統,包括儀器配置、時間控制流程等諸多細節進行介紹。除此之外,我們亦使用 GaAs(004)進行時間解析繞射實驗之測試,其結果顯示時間解析實驗系統可以確實運作。


    This thesis aims to construct a time-resolved X-ray diffraction system with an improved optics, including multi-cavity systems and sapphire X-ray resonators. The fundamental theorems, experimental setups, and measurements are described by following the order of multi-cavity system, sapphire X-ray resonator, and time-resolved X-ray diffraction system.
    The silicon multi-cavity systems consist of more than one hard X-ray Fabry-Parot resonators (FPRs). Backward diffraction (12 4 0) at 14.4388 keV is employed to reflect the incident X-ray beam in FPRs. In practice, a three-mirror FPR that combines two FPRs were realized, of which the measured effective resonance spectrum included only one isolated resonance peak in the energy range of the backward diffraction. The bandwidth of the isolated resonance peak was improved to 0.79 meV.
    For sapphire crystal wafers, because of low crystal symmetry and shorter extinction length of the back reflection (0 0 0 30) at 14.3147 kev, sappire FRRs are superior to that made of silicon wafers. Experimantally, the cavity resonance experiments of sapphire FPRs have been carried out. Even though the defects in sapphire wafers and curved surfaces of crystal plates lowered the resonance efficiency, distinct resonance spectra of sapphire FPRs have been observed.
    For the time-resolved X-ray diffraction system, the layout of the arranged instruments, the synchronization timing control processes between the synchrotron X-rays and pumping laser pulses are reported. The standard test experiments, the time-resolved X-ray diffraction of GaAs(004), were also successfully demonstrated.

    1 導論. . . . . . . . . . . . . . . . . 1 2 理論基礎. . . . . . . . . . . . . . . . . 3 2.1 適合多層結構系統之動力繞射計算. . . . . . . . . . . . . . . . . 3 2.2 原子面與樣品表面偏移造成之相位偏移. . . . . . . . . . . . . . . 7 2.3 多層結構系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 多層遞迴演算法之限制. . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 正面與背面入射之情形. . . . . . . . . . . . . . . . . . . . 13 2.4.2 多層結構中各層晶體之晶格常數不同. . . . . . . . . . . . 14 2.4.3 各層晶格常數相異且倒晶格向量不平行於樣品表面法向量. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4 多光繞射下之多層遞迴演算法. . . . . . . . . . . . . . . . 16 2.4.5 多層遞迴演算法於共振腔計算之應用. . . . . . . . . . . . 16 2.5 於應變場下之晶體繞射. . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 應力場之分佈. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.2 應力場計算之實際範例. . . . . . . . . . . . . . . . . . . . 18 2.6 多共振腔系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.1 Fabry-Perot共振腔基本性質. . . . . . . . . . . . . . . . . 22 2.6.2 X光Fabry-Perot共振腔. . . . . . . . . . . . . . . . . . . . 23 2.6.3 X光Fabry-Perot共振腔之困難. . . . . . . . . . . . . . . . 25 2.6.4 縱向共振模挑選法之X光Fabry-Perot共振腔. . . . . . . . 27 2.7 時間解析動力繞射. . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 實驗設施與環境條件. . . . . . . . . . . . . . . . . 40 3.1 光束線與基本設施. . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 高解析度單光儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 時間解析繞射實驗. . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1 泵浦探測技術: pump-probe method . . . . . . . . . . . . 46 3.3.2 時間解析X光繞射實驗架構概述. . . . . . . . . . . . . . . 48 3.3.3 雷射系統. . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.4 雷射與同步輻射光源同步後之時間差調整. . . . . . . . . 54 3.3.5 偵測器與數據處理. . . . . . . . . . . . . . . . . . . . . . 58 4 實驗數據與分析. . . . . . . . . . . . . . . . . 60 4.1 X光多重共振腔. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 三氧化二鋁共振腔. . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 時間解析繞射實驗. . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 結論. . . . . . . . . . . . . . . . . 81

    [1] Iain McKinnie and Henry Kapteyn. High-harmonic generation: Ultrafast lasers yield X-rays. Nature Photonics, 4:149{151, 2010.
    [2] W. L. Bond, M. A. Duguay, and P. M. Rentzepis. Proposed resonator for an X-ray laser. Applied Physics Letters, 10:216, 1967.
    [3] R. D. Deslattes. X-ray monochromators and resonators from single crystal. Applied Physics Letters, 12:133, 1968.
    [4] AndreAuthier. Dynamical Theory of X-Ray Di raction. Oxford, New York, 2001.
    [5] Shih-Lin Chang. X-ray multiple-wave di raction : theory and application. Springer, New York, 2004.
    [6] Yuri P. Stetsko and Shih-Lin Chang. An algorithm for solving multiplewave dynamical X-ray di raction equations. Acta Crystallographica, A53:28{34, 1997.
    [7] 邱茂森. X光共振腔之24光動力繞射計算. 國立清華大學物理所博士論文, 2008.
    [8] V. G. Kohn, Yu. V. Shvydko, and E. Gerdau. On the theoy of an X-ray Fabry-Perot interferometer. physica status solidi (b), 221(597), 2000.
    [9] 張櫻議. X光曲面共振腔在背向繞射下的異常聚焦之研究. 國立清華大學物理所博士論文, 2011.
    [10] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc. Surface generation and detection of phonons by picosecond light pulses. Physical Review B, 34(6), 1986. 84
    [11] Eugene Hecht. Optics. Addison Wesley, San Francisco, 4th edition, 2001.
    [12] A. E. Siegman. Lasers. University Science Books, Sausalito, 1st edition, 1986.
    [13] Yuri Shvyd'ko. X-Ray Optics: High-Energy-Resolution Applications. Springer, Sausalito, 2004 edition edition, 2004.
    [14] Satio Takagi and H. H. Wills. Dynamical theory of di raction applicable to crystals with any kind of small distortion. Acta. Cryst., 15(1311), 1962.
    [15] Claude Rulliere. Femtosecond Laser Pulses: Principles and Experiments. Springer, New York, second edition, 2005.
    [16] Ku-Ding Tsuei, Hirofumi Ishii, Nozomu Hiraoka, Masato Yoshimura, Yen-Fa Liao, Cheng-Chi Chen, Chun-Jung Chen, Mau-Tsu Tang, Shih-Chun Chung, Di-Jing Huang, and Shih-Ling Chang. Next plan of Taiwan contract beamlines BL12B2 and BL12XU for materials science and bio-structure research. SPring-8 Information, 15(4), 2010.
    [17] S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy. Crystal cavity resonance for hard x rays: A di raction experiment. Physical Review B, 74(13411), 2006.
    [18] Makina Yabashi. X-ray monochromator with an energy resolution of 8E10-9 at 14.41 kev. Review of Scienti c Instruments, 72(11), 2001.
    [19] S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, , and T. Ishikawa. X-ray resonance in crystal cavities: Realization of Fabry-Perot resonator for hard X rays. Physical Review Letters, 94(174801), 2005.
    [20] S.-Y. Chen, H.-H. Wu, Y.-Y. Chang, Y.-R. Lee, W.-H. Sun, S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, M. Yabashi, and T. Ishikawa. Coherent trapping of x-ray photons in crystal cavities in the picosecond regime. Applied Physics Letters, 93(141105), 2008.
    [21] Y.-Y. Chang, S.-Y. Chen, H.-H. Wu, S.-C. Weng, C.-H. Chu, Y.-R. Lee, M.-T. Tang, Yu. Stetsko, B.-Y. Shew, M. Yabashi, and S.-L. Chang. Diffraction-enhanced beam-focusing for X-rays in curved multi-plate crystal cavity. Optics Express, 8:7886{7892, 2010.
    [22] Ying-Yi Chang, Sung-Yu Chen, Shih-Chang Weng, Chia-Hung Chu, Mau-Tsu Tang, Yuriy Stetsko, Bo-Yuan Shew, Makina Yabashi, and Shih-Lin Chang. Focusing X-rays with curvedmultiplate crystal cavity. X-Ray Opt. Instrum. 2010, pages 1{7, 2010.
    [23] Y.-Y. Chang, Y.-W. Tsai, Y.-H. Wu, M.-T. Tang, and S.-L. Chang. Dynamical diffraction e ect in a curved multi-plate crystal cavity. Acta Cryst. A, 68:729{735, 2012.
    [24] J. Larsson, P.A. Heimann, A.M. Lindenberg, P.J. Schuck, P.H. Bucksbaum, R.W. Lee, H.A. Padmore, J.S.Wark5, and R.W. Falcone. Ultrafast structural changes measured by time-resolved X-ray di raction. Applied Physics A, 66:587{591, 1998.
    [25] Christoph Rose-Petruck, Ralph Jimenez, Ting Guo, Andrea Cavalleri, Craig W. Siders, Ferenc Raksi, Je A. Squier, Barry C. Walker, Kent R. Wilson, and Christopher P. J. Barty. Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray di raction. Nature, 398:310{312, 1999.
    [26] A. H. Chin, R.W. Schoenlein, T. E. Glover, P. Balling, W. P. Leemans, and C. V. Shank. Ultrafast structural dynamics in insb probed by time-resolved X-ray di raction. Physical Review Letters, 83(2), 1999.
    [27] A. Cavalleri, 1 C.W. Siders, F. L. H. Brown, D. M. Leitner, C. Toth, J. A. Squier, C. P. J. Barty, and K. R. Wilson. Ultrafast structural dynamics in insb probed by time-resolved X-ray di raction. Physical Review Letters, 85(3), 2000.
    [28] H.-Y. Hao and H. J. Maris. Dispersion of the long-wavelength phonons in ge, si, gaas, quartz, and sapphire. Physical Review B, 63(224301), 2001.
    [29] D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, Th. Missalla, , and J. S. Wark. Probing impulsive strain propagation with X-ray pulses. Physical Review Letters, 86(14), 2001.
    [30] Yoshihito Tanaka, Toru Hara, Hiroshi Yamazaki, Hideo Kitamuraa, and Tetsuya Ishikawaa. Optical switching of X-rays using laser-induced lattice expansion. Journal of Synchrotron Radiation, 9:96{98, 2002.
    [31] O. Matsuda, O. B.Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu. Coherent shear phonon generation and detection with ultrashort optical pulses. Physical Review Letters, 93(9), 2004.
    [32] H. Park, X. Wang, S. Nie, R. Clinite, and J. Cao. Direct and real-time probing of both coherent and thermal lattice motions. Solid State Communications, 136:559{563, 2005.
    [33] H. J. Lee, J. Workman, J. S. Wark, R. D. Averitt, A. J. Taylor, J. Roberts, Q. McCulloch, D. E. Hof, N. Hur, S.-W. Cheong, and D. J. Funk. Optically induced lattice dynamics probed with ultrafast x-ray di raction. Physical Review B, 77(132301), 2008.
    [34] Eeuwe S. Zijlstra, Jessica Walkenhorst, and Martin E. Garcia. Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of insb. Physical Review Letters, 101(135701), 2008.
    [35] Maher Harb, Weina Peng, German Sciaini, Christoph T. Hebeisen, Ralph Ernstorfer, Mark A. Eriksson, Max G. Lagally, Sergei G. Kruglik, and R. J. Dwayne Miller. Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing lms of (001) si. Physical Review B, 79(094301), 2009.
    [36] S. Stoupin, A. M. March, H. Wen, D. A. Walko, Y. Li, E. M. Dufresne, S. A. Stepanov, K.-J. Kim, and Yu. V. Shvyd'ko. Direct observation of dynamics of thermal expansion using pump-probe high-energy-resolution x-ray di raction. Physical Review B, 86(054301), 20012.
    [37] E. Papalazarou, J. Faure, J. Mauchain, M. Marsi, A. Taleb-Ibrahimi, I. Reshetnyak, A. van Roekeghem, I. Timrov, N. Vast, B. Arnaud, and L. Perfetti. Coherent phonon coupling to individual bloch states in photoexcited bismuth. Physical Review Letters, 108(256808), 2012.
    [38] A. M. Lindenberg and. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum andH. C. Kapteyn, H. A. Padmore, R.W. Lee, J. S. Wark, , and R.W. Falcone. Time-resolved X-ray di raction from coherent phonons during a laser-induced phase transition. Physical Review Letters, 84(1), 2000.
    [39] K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, and D. von der Linde. Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Physical Review Letters, 87(22), 2001.
    [40] A. Plech and V. Kotaidis. Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Physical Review B, 70(195423), 2004.
    [41] S. L. Johnson, R. A. de Souza, U. Staub, P. Beaud, E. Mohr-Vorobeva, G. Ingold, A. Caviezel, V. Scagnoli, W. F. Schlotter, J. J. Turner, O. Krupin, W.-S. Lee, Y.-D. Chuang, L. Patthey, R. G. Moore, D. Lu, M. Yi, P. S. Kirchmann, M. Trigo, P. Denes, D. Doering, Z. Hussain, Z.-X. Shen, D. Prabhakaran, and A. T. Boothroyd. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in cuo. Physical Review Letters, 108(037293), 2012.
    [42] Yoshimitsu Fukuyama, Nobuhiro Yasuda, Jungeun Kim, Haruno Murayama, Takashi Ohshima, Yoshihito Tanaka, Shigeru Kimura, Hayato Kamioka, Yutaka Moritomo, Koshiro Toriumi, Hitoshi Tanaka, Kenichi Kato, Tetsuya Ishikawa, and Masaki Takata. Ultra-high-precision time control system over any long time delay for laser pump and synchrotron x-ray probe experiment. Reivew of Scienti c Instruments, 79(045107), 2008.
    [43] Yoshihito Tanaka, Yoshimitsu Fukuyama, Nobuhiro Yasuda, Jungeun Kim, Haruno Murayama, Shinji Kohara, Hitoshi Osawa, Takeshi Nakagawa, Shigeru Kimura, Kenich Kato, Fumiko Yoshida, Yutaka Moritomo Hayato Kamioka and, Toshiyuki Matsunaga, Rie Kojima, Noboru Yamada, Koshiro Toriumi, Takashi Ohshima, Hitoshi Tanaka and Masaki Takata. Development of picosecond time-resolved microbeam X-ray di raction technique for investigation of optical recording process. Japanese Journal of Applied Physics, 48(03A001), 2009.
    [44] Yujiro Hayashi, Yoshihito Tanaka, Tomoyuki Kirimura, Noboru Tsukuda, Eiichi Kuramoto, and Tetsuya Ishikawa. Acoustic pulse echoes probed with time-resolved X-ray triple-crystal di ractometry. Physical Review Letters, 96(115505), 2006.
    [45] X. R. Huang, D. P. Siddons, A. T. Macrander, R.W. Peng, and X. S. Wu. Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast. Physical Review Letters, 108(224801), 2012.
    [46] M.-S. Chiu, Yu. P. Stetsko, and S.-L. Chang. Dynamical calculation for Xray 24-beam di raction in a two-plate crystal cavity of silicon. Acta Cryst. A, 64:304{403, 2008.
    [47] 黃亮諭. 藍寶石X光共振腔之可行性研究. 國立清華大學物理所碩士論文, 2009.
    [48] M. S. Akselrod and F. J.Bruni. Modern trends in crystal growth and new applications of sapphire. Journal of Crystal Growth, 360:134{145, 2012.
    [49] 劉鴻霖. 藍寶石晶體缺陷之X光位像術研究. 國立清華大學物理所碩士論文, 2012.
    [50] W.-M. Chen, P.J. McNally, Y.V. Shvyd'ko, T. Tuomi, A.N. Danilewsky, and M. Lerch. Dislocation analysis for heat-exchanger method grown sapphire with white beamsynchrotron X-ray topography. Journal of Crystal Growth, 252:113{119, 2003.
    [51] C. P. Khattak and F. Schmid. Growth of the world's largest sapphire crystals. Journal of Crystal Growth, 225:572{579, 2001.
    [52] Yorinobu Kunimune, Yoshitaka Yoda, Koichi Izumi, Makina Yabashi, X.- W. Zhang, Taikan Harami, Masami Ando, and Seishi Kikuta. Two-photon correlations in X-rays from a synchrotron radiation source. Journal of Synchrotron Radiation, 4:199{203, 1997.
    [53] M. Yabashi, K. Tamasaku, and T. Ishikawa. Characterization of the transverse coherence of hard synchrotron radiation by intensity interferometry. Physical Review Letters, 87(14), 2001.
    [54] M. Yabashi, K. Tamasaku, and T. Ishikawa. Measurement of X-ray pulse widths by intensity interferometry. Physical Review Letters, 88(24), 2002.
    [55] M. Yabashi. Intensity interferometry for the study of X-ray coherence. Physical Review A, 69(023813), 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE