研究生: |
張溫文 Zhang, Wen-Wen |
---|---|
論文名稱: |
40-環鋁鋅亞磷酸鹽的模板置換探索及催化性能研究 Template Exchange Exploration and Catalytic Property Study for 40-Membered Ring Aluminum Zincophosphite |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
黃暄益
Huang, Hsuan-Yi 林嘉和 Lin, Chia-Her |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 183 |
中文關鍵詞: | 鋁鋅亞磷酸鹽 、模板置換 、二氧化碳環加成 、還氧丙烷 、NTHU-13 、碳酸丙烯酯 |
外文關鍵詞: | Aluminum Zincophosphite, Template Exchange, Carbon dioxide catalysis, propylene oxide, NTHU-13, propylene carbonate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目標主要是開發無機孔洞骨架物質在二氧化碳固定化的應用性。首先運用離子交換提升孔隙率的原理,將40R-NTHU-13(Al)(以下簡稱40R(Al))孔洞中所填充的模板離子,從長碳鏈的辛基銨(n-octlyammonium)換成短碳鏈的半胱銨(cysteammonium);其次利用半胱銨具有的硫醇官能基進行銀奈米粒子的負載製作複合材料。最後對兩類修飾過的40R(Al),分別研究其在環氧丙烷與二氧化碳的環加成反應中作為異相催化劑的效果。
藉由熱重分析儀確認模板離子置換的比例與粉末X光繞射測量置換後樣品的結構穩定性,結果顯示約33%的辛基銨被置換成半胱銨為最佳置換條件,在後續將此樣品稱為40R-SH;40R(Al)固體表面原先呈現疏水性質,40R-SH則變為親水性。在77 K氮氣與196 K二氧化碳氣體吸附分析中,40R-SH展示出比40R(Al)相對高的吸附量:吸附量分別提升52 %與54 %,驗證了置換短鏈模板提升孔隙率的想法。此外,由電子顯微鏡影像分析亦證實奈米銀粒子能均勻附載在40R-SH上而得到40R-SH-Ag複合材料。
40R(Al)骨架的建構單元分成ABC三種,C單元中的六配位鋅金屬中心的被證實是一個催化活性位點,可在二氧化碳與環氧丙烷環加成反應過程中提供環氧丙烷分子附著。因此進一步將鋅金屬中心部分摻雜鎂離子,再進行模板置換可得40R(Al)@Mg-SH。針對上述所有材料研究其催化效率:在80 ℃/1.36 MPa CO2的實驗條件下,對比文獻中其他晶性孔洞材料,40R(Al)所表現的催化效果TOF值(348.9 h-1)為最高;接著比較40R-SH與40R-SH-Ag,都發現具有因為結構修飾所貢獻的催化效果提升,尤其是當反應溫度是室溫時效果更明顯,最佳的催化效率則是由40R(Al)@Mg-SH所展現的30 %效率提升。
此論文研究結果顯示40(Al)結構可修飾作為二氧化碳與環氧丙烷環加成反應的異相催化劑,開創了第一個金屬亞磷酸鹽孔洞結構在二氧化碳固定化之應用的首例。
The goal of this thesis is to explore the application of inorganic nanoporous materials as the heterogeneous catalysts for the cycloaddition reaction of CO2 and epoxide, namely CO2 fixation. The template exchange was conducted on the aluminium zincophosphite with 40R channels (denoted by 40R(Al)) to replace the template, octylammonium (OA), with a smaller cysteammonium (CA) to enhance the porosity. The thiol functional group of CA in template-exchanged sample was utilized for Ag nanoparticles loading to prepare a nanocomposite. The efficiency of these functionalized materials as catalysts was evaluated.
In the second chapter, several template-exchange conditions were examined by the concentration gradient of CA to give products which are characterized by TGA、EA and PXRD analysis. The results show the product of the optimized condition, which the integrity of structure sustained, was that near 33 % of OA exchanged by CA. The template exchange also resulted in the elevated porosity of template-exchanged sample (denoted by 40R-SH) compared to 40R(Al), evidenced by the enhancement of the adsorption capacity, 52 % for N2 and 54 % for CO2, respectively. More interestingly, the hydrophobic surface of 40R(Al) attributed to the long alkyl chain of OA was altered during the template exchange process. The surface of 40R-SH became hydrophilic, revealed by contact angle measurements, also an indication of the successful template exchange. Furthermore, we succeeded in loading silver nanoparticles with 1.8 nm particles size on 40R-SH, denoted by 40R-SH-Ag, which would be useful for further applications.
It was perceived that block C, a structural building unit of 40R(Al), is an active site for the epoxide molecules to bind in the cycloaddition. Therefore, the Zn centers of block C were doped with Mg centers, which have shown catalytic activity in CO2 fixation. Followed by the template exchange, a sample named 40R(Al)Mg-SH was produced. By comparing the catalysis efficiencies of 40R(Al) and the crystalline porous materials in the literature, 40R(Al) showed the highest TOF value (348.9 h-1) in 80℃/1.36 MPa CO2 condition. The enhancements of catalysis efficiencies of 40R-SH and 40R-SH-Ag were observed especially at low temperature (i.e. R.T.). Remarkably, 40R(Al)@Mg-SH surpassed all the above-mentioned cases with a TOF value raised by 30 % relative to 40R(Al) in the same condition.
In conclusion, 40R(Al) have shown viable post-modification and practical applications as the heterogeneous catalyst for the cycloaddition reaction of CO2 and epoxide and also been the first case of metal phosphites in CO2 fixation.
1.(a) Takashima, Y.; Kitagawa, S. et al., Nat. Commun. 2011, 2, 168; (b) Xiong, S.; Wang, Z. et al., Cryst. Growth Des. 2013, 13, 2670-2674; (c) He, J.; Wang, Y.; Yan, Z. et al., Chem. Commun. 2014, 50, 7063-7066; (d) Su, X.; Hatton, T. A. et al., ACS Appl. Mater. Interfaces 2017, 9, 11299-11306; (e) Millward, A. R.; Yaghi, O. M. et al., J. Am. Chem. Soc. 2005, 127, 17998-17999; (f) Levine, D. J.; Long, J. R. et al., J. Am. Chem. Soc. 2016, 138, 10143-10150; (g) Zhang, Z.-J.; Yan, S.-P. et al., Chem. Commun. 2011, 47, 6425-6427.
2.Barrer, R. M., Synthesis of Zeolites. In Stud Surf Sci Catal, Držaj, B.; Hočevar, S.; Pejovnik, S., Eds. Elsevier: 1985; Vol. 24, pp 1-26.
3.C., G. J.; R., M. A. et al., J Appl Polym Sci 2004, 93, 1102-1109.
4.Kerr, G. T. et al., Science 1963, 140, 1412.
5.K., C. A.; Gérard, F.; Thierry, L. et al., Angew. Chem. 1999, 111, 3466-3492.
6.Wilson, S. T.; Flanigen, E. M. et al., J. Am. Chem. Soc. 1982, 104, 1146-1147.
7.Davis, M. E.; Crowdert, C. et al., Nature 1988, 331, 698.
8.(a) Moore, P. B.; Shen, J. et al., Nature 1983, 306, 356; (b) Estermann, M.; Kessler, H., Nature 1991, 352, 320; (c) Yaming, Z.; Dongyuan, Z. et al., Angew. Chem. 2001, 113, 2224-2226; (d) Huo, Q.; Chippindale, A. M. et al., J. Chem. Soc., Chem. Commun. 1992, 875-876; (e) Jing, L.; Ruren, X. et al., Angew. Chem. Int. Ed. 2006, 45, 2546-2548.
9.Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. et al., Nature 1999, 402, 276.
10.(a) Wang, J.-S.; Dong, Y.-B. et al., Inorg. Chem. 2016, 55, 6685-6691; (b) Sadakiyo, M.; Kitagawa, H. et al., J. Am. Chem. Soc. 2014, 136, 13166-13169; (c) Pal, A.; Das, M. C. et al.,Inorg. Chem. 2017, 56, 13991-13997; (d) Zhao, X.; Chen, L. et al., ACS Appl. Mater. Interfaces 2018, 10, 5633-5640; (e) Rojas, S.;Horcajada, P. et al., ACS Omega 2018, 3, 2994-3003.
11.Maspoch, D.; Veciana et al., J. Chem. Soc. Rev. 2007, 36, 770-818.
12.(a) Lin, C.-H.; Wang, S.-L.; Lii, K.-H. et al., J. Am. Chem. Soc. 2001, 123, 4649-4650; (b) Liao, Y.-C.; Wang, S.-L. et al., J. Am. Chem. Soc. 2004, 126, 1320-1321; (c) Liao, Y.-C.; Wang, S.-L. et al., J. Am. Chem. Soc. 2005, 127, 12794-12795; (d) Liao, Y.-C.; Wang, S.-L. et al., J. Am. Chem. Soc. 2005, 127, 9986-9987; (e) Lai, Y.-L.; Wang, S.-L. et al., J. Am. Chem. Soc. 2007, 129, 5350-5351; (f) Yang, Y.-C.; Wang, S.-L. et al., J. Am. Chem. Soc. 2008, 130, 1146-1147; (g) Pei‐Ci, J.; Sue‐Lein, W. et al., Angew. Chem. 2009, 121, 756-759; (h) Shu‐Hao, H.; Wei‐Chang, W.; Sue‐Lein, W. et al., Angew. Chem. 2009, 121, 6240-6243; (i) Pei‐Ci, J.; Sue‐Lein, W. et al., Angew. Chem. Int. Ed. 2010, 49, 4200-4204; (j) Shu‐Hao, H.; Sue‐Lein, W. et al., Angew. Chem. Int. Ed. 2011, 50, 5319-5322; (k) Chang, Y.-C.; Wang, S.-L. et al., J. Am. Chem. Soc. 2012, 134, 9848-9851; (l) Lin, H.-Y.; Wang, S.-L. et al., Science 2013; (m) Hui‐Lin, H.; Sue‐Lein, W. et al., Angew. Chem. Int. Ed. 2015, 54, 965-968; (n) Sie, M.-J.; Wang, S.-L. et al., J. Am. Chem. Soc. 2016, 138, 6719-6722.
13.王素蘭,科儀新知,民國九十四年二月第二十六卷第四
14.APEX II software package; Bruker AXS, Madison, WI, 2008.
15.Retrieved at May 31, 2019, from http://www.blue-scientific.com/nordic-products/bruker-xrd/bruker-d2-phaser/
16.Retrieved at May 31, 2019, from https://www.perkinelmer.com/category/thermogravimetry-analysis-tga
17.Retrieved at May 31, 2019, from http://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#EA
18.Retrieved at May 31, 2019, from http://nscric.web.nthu.edu.tw/files/13-1006-120953.php?Lang=zh-tw
19.Retrieved at May 31, 2019, from http://nscric.web.nthu.edu.tw/files/13-1006-122124.php?Lang=zh-tw
20.Retrieved at May 31, 2019, from http://nscric.web.nthu.edu.tw/files/13-1006-122533.php?Lang=zh-tw
21.Retrieved at May 31, 2019, from https://www.jeolusa.com/PRODUCTS/Transmission-Electron-Microscopes-TEM/200-kV/JEM-2100Plus
22.Retrieved at May 31, 2019, from https://www.jeol.co.jp/en/products/detail/JSM-7500F.html
23.Charles H. Giles et al., J.S.D.C., 1973, 287-291..
24.Lrving Langmuir. et al., J. Am. Chem. Soc. 1916, 38, 2221-2295.
25.Brunauer S. ; Emmett P. H.; Teller E., J. Am. Chem. Soc. 1938, 60, 309-319.
26.Zeid A. ALOthman et al., Materials, 2012, 5, 2875-2902.
27.Retrieved at May 31, 2019, from https://www.micromeritics.com/Product-Showcase/ASAP-2020-Plus-Chemisorption.aspx
28.Retrieved at May 31, 2019, from http://nscric.web.nthu.edu.tw/files/13-1006-120355.php?Lang=zh-tw
29.Wilson, S. T.; Flanigen, E. M. et al., ACS Symp. Ser. 1983, 218, 79-106.
30.Gier, T. E.; Stucky, G. D. et al., Nature 1991, 349 (6309), 508-510.
31.Freyhardt, C. C.; Davis, M. E. et al., Nature 1996, 381 (6580), 295-298.
32.Huo, Q. H.;Chippindale, A. M. et al., J. Chem. Soc. Chem. Commun., 1992, (12), 875-876.
33.Lai, Y. L.; Wang, S. L. et al., J. Am. Chem. Soc. 2007, 129 (17), 5350-5351..
34.Lin, H. Y.; Wang, S. L. et al., Science 2013, 339 (6121), 811-813.
35.(a) Huang, H. M.; Yang, L. P. et al., J. Hazard. Mater. 2010, 175 (1-3), 247-252.;(b) Wang, S. B.; Paajanen, A. et al., J. Hazard. Mater. 2009, 172 (1), 416-422.;(c) Borai, E. H.; Paajanen, A. et al., J. Hazard. Mater. 2009, 172 (1), 416-422.;(d) Kumar, P.; Manos, M. J. et al., Prog. Mater Sci. 2017, 86, 25-74.;(e) Zhao, C. M.; Li, Y. D. et al., J. Am. Chem. Soc. 2017, 139 (24), 8078-8081.;(f) Gao, W.; Gao, Q. Y. et al., Crystengcomm 2019, 21 (7), 1159-1167.
36. (a) Manto, M. J.; Wang, C. et al., Chemosphere 2018, 198, 501-509. (b) Zhang, P.; Frost, R. L. et al., Chem. Eng. J. 2019, 366, 11-20. (c) Saltali, K.; Aydin, M. et al., J. Hazard. Mater. 2007, 141 (1), 258-263. (d) Murthy, V.; I. D. R. et al., J. Phys. Chem. C 2018, 122 (20), 10801-10810. (e) Kithome, M.; Lavkulich, L. M.; Bomke, A. A. et al., Soil Sci. Soc. Am. J. 1998, 62 (3), 622-629. (f) Hedstrom, A., J. Environ. Eng.-ASCE 2001, 127 (8), 673-681.
37.(a) Yu, J. C.; Qian, G. D. et al., Angew. Chem.-Int. Edit. 2012, 51 (42), 10542-10545.;(b) Zhao, X.; Feng, P. Y. et al., Nat. Commun. 2013, 4, 9.
38.(a) Veisi, H.; Hemmati, S. et al., Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 97, 624-631.;(b) Sun, Q.; Ma, S. Q. et al., J. Am. Chem. Soc. 2017, 139 (7), 2786-2793.;(c) Yee, K. K.; Xu, Z. T. et al., J. Am. Chem. Soc. 2013, 135 (21), 7795-7798.;(d)Rostamian, R.; Rafati, A. A. et al., Chem. Eng. J. 2011, 171 (3), 1004-1011.;(e) Peng, F. M.;Zhu, J. F. et al., J. Hazard. Mater. 2011, 196,36-43.
39.(a) Calderon-Jimenez, B.; Baudrit, J. R. V. et al., Front. Chem. 2017, 5, 26.;(b) Kim, S. R.; Jo, W. K. et al., Int. J. Hydrogen Energy 2019, 44 (2), 801-808.;(c) Liu, S. B.; Luo, J. L. et al., J. Am. Chem. Soc. 2017, 139 (6), 2160-2163.;(d) Sekine, K.; Yamada, T. et al., Chem. Soc. Rev. 2016, 45 (16), 4524-4532.;(e) Kim, C.; Hwang, Y. J. et al., J. Am. Chem. Soc. 2015, 137 (43), 13844-13850.;(f) Liu, W. K.; Gust, R. et al., Coord. Chem. Rev. 2016, 329, 191-213.
40.Contact Angle of Liquid Drops on Solids. In Surface Chemistry.
41.Wirde, M.; Gelius, U.; Nyholm, L. et al., Langmuir 1999, 15 (19), 6370-6378.
42.Zhang, H.; Wang, G.; Chen, D.; Lv, X. J.; Jinghong, U. H. et al., Chem. Mater.
2008, 20 (20), 6543-6549.
43.Peter Styring, D. J., 2011., Carbon Capture Utilisation in the green economy (Report no.501).
44.David, 2018., Gobal Polypropylene Carbonate(PCC) Market 2018-Research Report, Demand, Price, Degion and Forecast to 2025.
45.(a) He, Q.; Kerton, F. M. et al., Catal. Sci. Technol. 2014, 4 (6), 1513-1528.;(b) Decortes, A.; Kleij, A. W. et al., Angew. Chem.-Int. Edit. 2010, 49 (51), 9822-9837.;(c) Shaikh, R. R.; Pornpraprom, S.; D'Elia, V. et al., ACS Catal. 2018, 8 (1), 419-450.;(d) Lan, D. H.; Yin, S. F. et al., Chin. J. Catal. 2016, 37 (6), 826-845.
46.Song, J. L.; Han, B. X. et al., Green Chem. 2009, 11 (7), 1031-1036.
47.(a) Gao, X. X.; Zhang, X.; Sun, J. M. et al., Cryst. Growth Des. 2017, 17 (1), 51-57.;(b) Cho, H. Y.; Ahn, W. S. et al., Catal. Today 2012, 185 (1), 35-40.;(c) Zalomaeva, O. V.; Balzhinimaev, B. S. et al., J. Energ. Chem. 2013, 22 (1), 130-135.;(d) Liu, D.; Li, G.; Liu, H. O. et al., Appl. Surf. Sci. 2018, 428, 218-225.;(e) Liu, L. P.; Su, C. Y. et al., Chem.-Asian J. 2016, 11 (16), 2278-2283.
48.(a) Kim, J.; Kim, S. N.; Ahn, W. S. et al., Appl. Catal. A-Gen. 2013, 453, 175-180.; (b) Gao, W. Y.; Ma, S. Q. et al., Angew. Chem.-Int. Edit. 2014, 53 (10), 2615-2619.;(c) Dhakshinamoorthy, A.; Garcia, H. et al., Green Chem. 2018, 20 (1), 86-107.
49.(a) Ai, J.; Dang, S.; Sun, Z.-M. et al., Dalton Transactions 2017, 46 (20), 6756-6761.;(b) Gao, C.-Y.; Wu, D.; Sun, Z.-M. et al., Chemical Communications 2017, 53 (7), 1293-1296.
50.(a) Jhang, P. C.; Wang, S. L. et al., Angew. Chem.-Int. Edit. 2009, 48 (4), 742-745.;(b) Jhang, P. C.; Chuang, N. T.; Wang, S. L. et al., Angew. Chem.-Int. Edit. 2010, 49 (25), 4200-4204.;(c) Huang, S. H.; Lin, C. H.; Wang, S. L. et al., Angew. Chem.-Int. Edit. 2009, 48 (33), 6124-6127.;(d) Sie, M. J.; Lin, C. H.; Wang, S. L. et al., J. Am. Chem. Soc. 2016, 138 (21), 6719-6722.
51.(a) Wang, J. Q.; Zhang, X. P.; Zhang, S. J. et al., Phys. Chem. Chem. Phys. 2012, 14 (31), 11021-11026.;(b) Gallardo-Fuentes, S.; Landaeta, E.; Ormazábal-Toledo, R. et al., Journal of CO2 Utilization 2016, 16, 114-120.;(c) Noh, J.; Kim, Y.; Kim, M. et al., J. Ind. Eng. Chem. 2018, 64, 478-483.;(d) Peng, J.; Wei, Z. D.; Wang, L. H.; Lei, B. et al., Fuel 2018, 224, 481-488.
52.Beyzavi, M. H.; Farha, O. K. et al., Front. Energy Res. 2015, 2 (63), 1-10.
53.Sun, J. M.; Fujita, S.; Arai, M. et al., Catal. Today 2004, 93-5, 383-388.
54.Bai, D. S.; Zhao, X. F. et al., Catal. Commun. 2009, 11 (3), 155-157.
55.Chen, J. J.; Gan, Z. L.; Yi, X. et al., Catal. Lett. 2018, 148 (3), 852-856.
56.Tasci, Z.; Kunduracioglu, A.; Kani, I.; Cetinkaya, B. et al., ChemCatChem, 2012, 4 (6), 831-835.