簡易檢索 / 詳目顯示

研究生: 溫裕翔
Wen, Yu-Hsiang
論文名稱: 基於三階非線性效應之 全光訊號調變格式轉換系統
All-optical modulation format conversion system based on third-order nonlinearity
指導教授: 馮開明
Kai-Ming Feng
口試委員: 黃承彬
李明昌
張宏鈞
陳智弘
陳南光
彭朋群
Chen-Bin (Robin) Huang
M. C. Lee
Hung-chun Chang
J. Chen
N. K. Chen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 106
中文關鍵詞: 全光調變格式轉換四波混頻交互相位調變高度非線性光纖
外文關鍵詞: All-optical modulation format conversion, Four waves mixing, Cross-phase modulation, Highly nonlinear fiber
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文,我們著重全光調變格式轉換系統之研究,透過三階非線性效應,不但設計出新穎的全光調變格式轉換系統,更進行深入且完整的探討。首先,在低速轉高速格式的轉換系統中,我們與新加坡國立大學合作,建立100 Gbps RZ-QPSK之訊號傳輸平台,並透過四波混頻機制,完成RZ-QPSK 與 ASK 轉 RZ-8QAM的調變格式轉換系統,並進而探討交互相位調變對於轉換效果之影響。緊接著,我們透過交互相位調變,提出一種相對容易實現的方式,能在雙向傳輸架構中以低成本、低系統複雜度與抗背向散射的優勢,完成四路低速的NRZ-OOK 轉一路高速的PDM RZ-QPSK 訊號。而在高速轉低速格式的方向上,我們藉由四波混頻效應,提出相位透明的轉換機制,在雙向傳輸的架構中,完成NRZ-QPSK 轉 2 × BPSK的轉換系統,不僅不需昂貴設備與複雜架構,更可完整保存原訊號的相位資訊。最後,我們設計新型系統,能在一段光纖中,同時完成高速到低速格式,以及低速到高速格式的轉換。其中,在高速轉低速的部分,我們進化成在一路的方向上,完成NRZ-QPSK to 2×BPSK的轉換。而在低速到高速的部分,我們透過自我幫浦的方式,完成兩路PSK to QPSK的調變格式轉換。由於兩道轉換機制可在同一段光纖當中完成,因此可達到降低結構成本與降低架構複雜度的優點。此外,由於兩道機制是在垂直的偏振態、且相反方向所完成的,故可減少反射雜訊的干擾,例如:受激布里淵散射(Stimulated Brillouin Scattering)、雙重雷利背向散射(Double Rayleigh Backscattering)。


    All-optical modulation format conversion plays an important role in the future optical communication networks due to the different modulation formats are selectively applied to various optical networks. In this dissertation, we focus on the topic of modulation format conversion. To decrease the capital costs and network complexity for the further all-optical communication networks, we committed to develop a simple, cost-effective and lower-complexity modulation format converter.
    We start from modulation format conversion from several low-speed signals to a high-speed one, including all-optical 20Gbps QPSK and 10Gbps ASK to a 30Gbps QPSK signal by using FWM mechanism; XPM-based all-optical 4 12.5Gbps NRZ-OOK signals to a 50Gbps PDM RZ-QPSK signal with a simple and cost-effectively methods.
    On the other hands, we keep to investigate the modulation format conversion from a high-speed signal to several low-speed signals. We propose and experimental demonstrated a all-optical phase-transparent format conversion from a 25Gbps QPSK signal to 2 × 12.5Gbps BPSK signals by using FWM nonlinearity in a double-pass scheme.
    Furthermore, we propose a multifunctional all-optical format converter based on four-wave mixing in a bi-directional architecture. Multi-functions, including: high-speed to low-speed and low-speed to high-speed format conversions are simultaneously demonstrated both in simulation and experiment. Based on the simple structure, the proposed format converter has great potential to decrease the implement costs and network complexity. Besides, the annoying back-propagating effect, including Rayleigh back-scattering (RBS) and stimulated Brillouin scattering (SBS) can be avoided to affect the other function. In the scenarios of phase de-multiplexing, the converted signals can preserve the phase information of the original signal by adapting two optical pumps. On the other hands, the function of phase multiplexing is also achieved without any additional pumps, which can offers great spectrum efficiency.

    Chapter 1 Introduction 1 1.1 Background of the Research 2 1.2 Motivation of Modulation Format Conversion 8 1.3 Dissertation Organization 10 Chapter 2 The analysis of the employed transmitter, receiver, and 3rd Nonlinearities 11 2.1 The Principle of Optical Modulator 12 2.1.1 Phase Modulator 12 2.1.2 Mach-Zehnder modulator 14 2.1.3 IQ-modulator 18 2.2 The principle of coherent receiver 19 2.3 Cross Phase Modulation (XPM) 24 2.4 Four-Wave Mixing (FWM) 26 Chapter 3 All-Optical Modulation Format Conversion from several Low-speed signals to a High-speed one 33 3.1 Literatures Review 34 3.2 Simple MFC from NRZ-QPSK and RZ-ASK signals to a RZ-8QAM signal 40 3.2.1 Operation Principle 40 3.2.2 Experimental Demonstration 42 3.3 Cost-effective MFC from 4 NRZ-OOK signals to a PDM RZ-QPSK signal 46 3.3.1 Operation Principle 46 3.3.2 Numerical Simulation 49 3.3.3 Experimental Demonstration 55 3.4 Summary 62 Chapter 4 All-Optical Modulation Format Conversion from High-speed signal to several Low-speed signals 63 4.1 Literatures Review 64 4.2 Phase-preserved MFC from NRZ-QPSK signals to two NRZ-QPSK signal 67 4.2.1 Operation Principles 67 4.2.2 Numerical Simulation 69 4.2.3 Experimental Demonstration 72 4.3 Summary 79 Chapter 5 Simulations All-Optical Modulation Format Conversion between High-speed signal and Low-speed signals 80 5.1 Operation Principle 81 5.2 Numerical Simulation 82 5.3 Experimental Demonstration 88 5.4 Summary 92 Chapter 6 Conclusions 93 Reference 95

    [1] T. Richter, et al., “Single wavelength channel 10.2 Tb/s TDM-Data capacity using 16-QAM and coherent detection,” in Proc. OFC’2011, Paper PDPA9.
    [2] J. Sakaguichi, et al., “19-core fiber transmission of 19x100x172-Gb/s SDM WDM PDM-QPSK signals at 305Tb/s,” in Proc. OFC’2012, Paper PDP5C.1
    [3] E. Ip, et al., “Coherent detection in optical fiber systems,” Opt. Express, vol. 16, no. 2, pp. 753-791, 2008.
    [4] D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, Feb. 2013.
    [5] A. E. Willner, et al., “All-optical signal processing,” J. Lightwave. Technol. vol. 32, no. 4, pp. 660–680, Feb. 2014.
    [6] L.-S. Yan, et al., “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave. Technol. vol. 30, no. 24, pp. 3760–3770, Dec. 2012.
    [7] M. Z. Shen, et al., “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett, 21, pp.1591–1593, 2009
    [8] J. Wang, et al., “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett, 35, pp.2979–2981, 2010
    [9] D. Wang, et al., “All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror,” Opt. Express, 18, pp. 10343–10353, 2010.
    [10] Dawei Wang, et al., “Performance Comparison of Using SOA and HNLF as FWM Medium in a Wavelength Multicasting Scheme With Reduced Polarization Sensitivity,” J. Lightw. Technol., 28, pp. 3497–3505, 2010
    [11] Y. Gao, et al., “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett, 22, pp.838–840, 2010
    [12] J. Yu, et al., “Wavelength conversion of optically labeled 112-Gb/s polarization multiplexed RZ-QPSK packets,” IEEE Photon.Technol. Lett., 20, pp. 1977–1979, 2008.
    [13] Xuejun Liu, et al., “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems,” Optics Communication., 283, pp. 2749–2753, 2010.
    [14] Y. Liu, et al., “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol., vo. 25, no. 1, pp. 103-108, 2007.
    [15] M. Matsuura, et al., “Wideband wavelength-flexible all-optical signal regeneration using gain-band tunable Raman amplification and self-phase-modulation-based spectral filtering,” Opt. Lett. 34(16), 2420–2422, 2009.
    [16] N. S. M. Shah, et al., “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett., 22, 27–29, 2010.
    [17] L. Bramerie, , et al., “Cascadability and wavelength tunability assessment of a 2R regeneration device based on a 8 channel saturable absorber module,” in Proc. OFC. Conf., Anaheim, CA, 2007, Paper PDP1.
    [18] Zheng Zheng, et al., “All-Optical Regeneration Of DQPSK/QPSK Signals Based On Phase-Sensitive Amplification” OFC/NFOEC 2008, JWA71.
    [19] Giampiero Contestabile, Roberto Proietti, Marco Presi, and Ernesto Ciaramella, “40 Gb/s Wavelength Preserving 2R Regeneration for both RZ and NRZ Signals” OFC/NFOEC 2008, OWK1.
    [20] G. Contestabile, et al., “Cross-Gain Compression in Semiconductor Optical Amplifier” J. Lightwave Technol., vol. 25, pp. 915-921, 2007.
    [21] I. Kang, et al., “All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers,” Opt. Express, no. 17, pp. 19062-19066, 2009.
    [22] X. Wu, et al., “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1441-1447, 2010.
    [23] X. Wu, et al., “Eightfold 40-320 Gbit/s phase-coherent multiplexing and 320-40 Gbit/s demultiplexing using highly nonlinear fibers,” Opt. Lett., vol. 35, no. 11, pp. 1896-1898, 2010.
    [24] R. Salem, et al., “Signal regeneration using low-power four-wave mixing on silicon chip, ” Nat. Photon., vol. 2, pp. 35- 38, 2008.
    [25] L. K. Oxenløwe, et al., “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Topics Quantum Electron., vol.18, no.2, pp.996-1005, 2012.
    [26] A. Rostami, et al., “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers”, IEEE J. Quantum. Electron., vol. 46, pp.354-361, 2010.
    [27] J. H. Lee, et al., “Bismuth-oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump,” J. Lightwave Technol., vol. 24, no. 1, pp. 22-28, 2006.
    [28] M. P. Fok, et al., “Recent advances in optical processing techniques using highly nonlinear bismuth oxide fiber,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 3, pp. 587-598, 2008.
    [29] C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Select. Topics Quantum Electron., vol. 12, no. 3, pp. 451–458, 2006.
    [30] K. Mishina, et al., “NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter,” J. Lightw. Technol., vol. 24, no. 10, pp. 3751–3758, Oct. 2006.
    [31] K. Mishina, et al., “All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters”, Optics Express, vol. 15, no. 12, , pp. 7774–7785, 2007.
    [32] Dirk Van Den Borne, “Robust optical transmission systems”, Technische Universiteit Eindhoven, 2008.
    [33] Wendi Li, Minghua Chen, Yi Dong and Shizhong Xie, “All‐Optical Format Conversion From NRZ to CSRZ and between RZ and CSRZ using SOA‐Based Fiber Loop Mirror”, IEEE Photonics Technology Letters, vol. 16, no. 1, 2004.
    [34] Tong Ye, Cishuo Yan, Yuanyuan Lu, Fangfei Liu and Yikai Su, “All‐optical regenerative NRZ‐to‐RZ format conversion using coupled ring‐resonator optical waveguide”, Optics Express, vol. 16, no. 20, 2008.
    [35] B. E. A. Saleh and M. C. Teich, “Electro-Optics,” in Fundamentals of Photonics, 2nd ed. New York: Wiley, 2007, ch.20, sec.1, pp. 836-841.
    [36] Peter J. Winzer and Rene-Jean Essiambre, “Advanced Optical Modulation Formats,” Proceedings of the IEEE , vol. 94, no. 5, 2006.
    [37] Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros, and Joseph M. Kahn, “Coherent Detection in Optical Fiber Systems,” Optics Express, vol. 16, no. 2, 2008.
    [38] Kazuro Kikuchi, “Coherent Optical Communication Systems,” in Optical Fiber Telecommunications VB: Systems and Networks, 2008, ch.3, sec.2, pp. 98-104.
    [39] Xu Zhang, “Coherent Detection for Optical 100 Gb/s Links,” in Digital Signal Processing for Optical Coherent Communication Systems, 2012, ch.2, sec.2, pp. 9-14.
    [40] S. Alexander, “Design of Wideband Optical Heterodyne Balanced Mixer Receivers,” IEEE Journal on Lightwave Technology, vol. 5, no. 4, 1987.
    [41] K. Mishina, et al. "All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber" Opt. Express, 15, 8445-8453, 2007.
    [42] K. Mishina, et al. "All optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters," Opt. Express, 15, 7774-7785, 2007.
    [43] Yuanyuan Lu et. al. "All-optical format conversion from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators," Opt. Express, 15, 14275-14282, 2007.
    [44] Francesco Fresi, et al. “40-Gb/s NRZ-to-RZ and OOK-to-BPSK Format and Wavelength Conversion on a Single SOA-MZI for Gridless Networking Operations”, IEEE Photonics Technology Letters, vol. 24, no. 4, 2012.
    [45] Guoxiu Huang, et al., “All-Optical OOK to 16-QAM Modulation Format Conversion Employing Nonlinear Optical Loop Mirror,” J. Lightw. Technol., 30, pp. 1342–1350, 2012
    [46] Guoxiu Huang, et al., “All-Optical OOK to 16-QAM Modulation Conversion Based on Nonlinear Optical Loop Mirror with 1:2 coupler,” in Proc. OFC’2012, Paper OTh4H.3.
    [47] Wenhan Wu, et al. “All-Optical Format Conversion for Polarization and Wavelength Division Multiplexed System”, IEEE Photonics Technology Letters, vol. 24, no. 18, 2012.
    [48] G.-W. Lu, et. al. “Optical Phase Add-Drop for Format conversion Between DQPSK and DPSK and its Application in Optical Label Switching Systems,” IEEE Photonics Technology Letters, vol. 21, no. 5, 2009.
    [49] M. Gao, T. Kurosu, T. Inoue and S. Namiki, “Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers,” in Proc. ECOC’13, Sep. 2013, paper We.3.A.5.
    [50] R. P. Webb, M. Power and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Exp., vol. 21, no. 10, pp.12713–12727, May. 2013.
    [51] A. Bogris, “All-optical demultiplexing of 16-QAM signals into QPSK tributaries using four-level optical phase quantizers,” Opt. Lett. 39(7), 1775–1778 (2014).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE