簡易檢索 / 詳目顯示

研究生: 鄭嘉民
Cheng, Chia-Ming
論文名稱: 快速合意制取樣法應用於三維電腦視覺
Efficient Consensus Sampling for Robust Model Fitting with Application to 3D Vision Problems
指導教授: 賴尚宏
Lai, Shang-Hong
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 94
中文關鍵詞: 三維電腦視覺
外文關鍵詞: robust model fitting, 3D computer vision, fundamental matrix, structure from motion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們針對穩固的資料模型比對 (robust model fitting) 問題,提出了一個新的演算法來提升傳統 RANSAC 的效能和穩定性。為了讓這個演算法具備更廣泛的實用性,我們根據以下原則來設計我們的方法:完全由資料來決定參數 (fully data driven)、容許大部分資料為錯誤的資料、追求很快速的回應。為了達到這個目的,我們提出三個主要的方法在我們的演算法中:第一,我們提出一個被稱為 consensus sampling 的技術,其主要的概念是由測試的過程中所得到資訊來改進往後取樣的策略;第二,我們發展出一個稱為 PMKA 新技巧,以用來快速地測試所取樣的模型參數中,有哪一些是更大可能性是正確的取樣,而哪一些則可以儘早被淘汰以省下測試的時間;最後,我們提出一個 coarse-to-fine 的策略,在有錯誤資料的情況下,估算出正確資料的誤差範圍 (error scale)。
    我們將所發展的演算法,套用於電腦立體視覺的問題上。第一個應用是描述兩張影像幾何關係 (two-view geometry) 的模型,透過 fundamental matrix 來建立兩張影像中對應點的關係;另外,我們也將此演算法應用於由多張影像重建三維結構和相機關係 (structure from motion) 的問題。透過許多在模擬資料和實際影像上的實驗結果,我們驗證了我們的演算法比過去的方法,不論在精確度和效率上,都有更好的表現。


    In this thesis, we propose a new algorithm that improves the efficiency and robustness of random sampling consensus (RANSAC) for robust model fitting problems. To be more general and practical, this algorithm is designed to be fully data-driven, robust to highly contaminated data, and efficient enough to pursue real-time response for practical applications. To achieve this objective, three techniques are developed in an iterative consensus framework. Firstly, we propose a consensus sampling technique to increase the probability of sampling inliers by exploiting the feedback information obtained from the evaluation procedure. Secondly, the preemptive multiple K-th order approximation (PMKA) is developed for efficient model evaluation with unknown error scale. Lastly, we propose a coarse-to-fine strategy for the robust standard deviation estimation to determine the unknown error scale. We apply the algorithm to several 3D vision problems, including fundamental matrix computation and multi-view metric structure from motion. Experimental results on both simulated and real data are shown to demonstrate the superiority of the proposed algorithm over the previous methods.

    List of Figures iii List of Tables v List of Algorithms vi Chapter1 Introduction 1 1.1 The first example 2 1.2 Motivation and Contribution 8 1.3 Thesis Outline 10 Chapter2 Revisit of RANSAC 12 2.1 Issue I: Objective Function 12 2.1.1 Support number 13 2.1.2 MSAC 13 2.1.3 MLESAC 14 2.1.4 LMedS 14 2.1.5 RESC 15 2.1.6 MINPRAN 16 2.1.7 MDPE 16 2.2 Issue II: Crucial Arguments 17 2.2.1 Sampling Number 17 2.2.2 Error Scale 18 2.3 Issue III: Efficiency 19 2.3.1 Sampling 19 2.3.2 Evaluation 19 Chapter3 Efficient Consensus Sampling Algorithm 21 3.1 Consensus Sampling Process 22 3.1.1 Objective function 24 3.1.2 Integrated Proposal Probability 25 3.1.3 Stratified Sampling for the Sampling Subset 27 3.1.4 Stopping Criteria 29 3.2 Fast Hypothesis Evaluation and Preemptive Elimination 29 3.2.1 Preemption Scheme 29 3.2.2 Preemptive Multiple-K Approximation 30 3.3 Study on robust estimator of inlier standard deviation from noisy data 33 3.3.1 MSSE 33 3.3.2 EMSSE 35 3.3.3 Experimental comparisons of robust scale estimators 35 3.4 Algorithm Summary 37 Chapter4 Application to Two-view Geometry: Computation of Fundamental Matrix 38 4.1 Preliminary 38 4.2 Experimental results on simulation data 40 4.2.1 Limited Hypothesis Number 41 4.2.2 Limited Time Budget 42 4.2.3 Improvement by each new component of the proposed algorithm 42 4.2.4 Choice of expanding size for fast hypothesis evaluation 44 4.3 Experiments on Real data 45 Chapter5 Application to Multi-View Geometry: Metric Structure from Motion 49 5.1 Preliminary 49 5.2 System Overview 51 5.3 Robust Projective Reconstruction 52 5.3.1 Robust Determination of the Projection Matrices 54 5.3.2 M-estimator to Compute the Projective Structure 55 5.4 Robust metric upgrade 58 5.4 Benchmarks on simulation data 61 5.5 Experiments on Real Data 63 Chapter6 Application to 3D modeling system: Reconstruction of the Chinese Treasure- Jadeite Cabbage with Insects 66 6.1 Preliminary 66 6.2 System overview 69 6.3 Patch refinement 71 6.3.1 Dense optical flow computation 71 6.3.2 Roust dense depth Estimation 74 6.4 3D Modeling of Jadeite Cabbage with Insect 76 6.5 Performance Evaluation 82 Chapter7 Concluding Remarks 87 Bibliography 90

    Aanaes H., Fisker R., Astrom K., and Carstensen J.M. 2002. Robust factorization. IEEE Trans. Pat. Anal. and Mach. Intel., 24(9): 1215-1225.
    Bab-Hadiashar, A. and Suter, D. 1999. Robust segmentation of visual data using ranked unbiased scale estimate. Inte. Jour. of Information, Education and Research in Robotics and Artificial Intelligence, 17: 649-660.
    Beck, J.V. and Arnold, K.J. 1977. Parameter estimation in engineering and science. Wiley series in probability and mathematical statistics. J. Wiley, New York.
    Belsley, D.A., Kuh, E., and Welsch, R.E. 1980. Regression Diagnostics. John Wiley & Sons, USA.
    Besl, P.J. and McKay, N.D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pat. Anal. and Mach. Intel., 14(2): 239-256.
    Chen, P. and Suter, D. 2004. Recovering the Missing Components in a Large Noisy Low-Rank Matrix: Application to SFM. IEEE Trans. Pat. Anal. and Mach. Intel., 26(8): 1051-1063.
    Cheng, C.M., Wang, S.F., Teng, C.H., Huang, P.H., Chien, Y.C., and Lai, S.H. 2005. Three-dimensional model reconstruction for treasures of jadeite material from uncalibrated image sequences. In SPIE Proc. Videometrics VIII. 5665: 320-331.
    Cheng, C.M., Huang, P.H., and Lai, S.-H. 2005. Robust metric structure from motion for an extended sequence with outliers and missing data. In Proc. ICCV BenCOS Workshop (Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images), Beijing, China.
    Cheng, C.M., Wang, S.F., Teng, C.H., and Lai, S.H. 2008. Image-based three-dimensional model reconstruction for Chinese treasure - jadeite cabbage with insects. Computer and Graphics, 32: 682–694.
    Cheng, C.M. and Lai, S.H. 2009. A consensus sampling technique for fast and robust model fitting. To appear in Pattern Recognition.
    Cochran, W.G. 1977. Sampling Techniques. 3rd edition. John Wiley & Sons, Inc.
    Chen, H. and Meer, P. 2002. Robust computer vision through kernel density estimation. In Proc. European Conf. on Computer Vision, I: 236-250.
    Chum, O., Matas, J., and Kittler, J. 2003. Locally optimized RANSAC. In Proc. 25th DAGM Symp. Pattern Recognition, B. Michaelis and G. Krell, eds., pp. 236-243.
    Chum O. and Matas J. 2005. Matching with PROSAC- progressive sample consensus. In IEEE Proc. Computer Vision and Pattern Recognition, 1: 220-226.
    Chen, H., Meer, P., and Tyler, D.E. 2001. Robust regression for data with multiple structures. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1: 1069 - I-1075.
    Faugeras, O., Luong, Q.T., and Papadopoulo, T. 2001. The Geometry of Multiple Images, MIT Press.
    Fischler, M.A. and Rolles, R.C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. ACM Communications, 24(6): 381-395.
    Fitzgibbon A.W. and Zisserman A. 1998. “Automatic camera recovery for closed or open image sequences.” In Springer-Verlag Proc. European Conf. on Computer Vision, pp. 311–326.
    Forsyth, D.A., Haddon, J., and Ioffe, S. 2001. The joy of sampling. Inte. Jour. of Computer Vision, 41(1/2): 109–134.
    Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pat. Anal. and Mach. Intel., 6: 721–741.
    Gilks, W., Richardson, S., and Spiegelhalter, D. 1996. Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
    Hartley, R. and Zisserman, A. 2000. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK.
    Horn, B.K.P. and Schunck, B.G. 1981. Determining optical flow. Artificial Intelligence, 17: 185-203.
    Illingworth, J. and Kittler, J. 1988. A survey of the Hough transform. Computer Vision, Graph, Image Processing, 44: 87-116.
    Isard, M. and Blake, A. 1998. CONDENSATION- conditional density propagation for visual tracking. Inte. Jour. of Computer Vision, 29(1): 5-28.
    Jacobs D. 1997. Linear fitting with missing data: Applications to structure from motion and to characterizing intensity images. In IEEE Proc. Computer Vision and Pattern Recognition, pp.206 – 212.
    Lai, S.H. and Vemuri, B.C. 1998. Reliable and efficient computation of optical flow. Inte. Jour. of Computer Vision, 29(2): 87-105.
    Laurentin, A. 1994. The visual hull concept for silhouette-based image understanding. IEEE Trans. Pat. Anal. and Mach. Intel., 16(2): 150-162.
    Lee, K.M., Meer, P., and Park, R.H. 1998. Robust adaptive segmentation of range images. IEEE Trans. Pat. Anal. and Mach. Intel., 20(2): 200-205.
    Lowe, D. 2004. Distinctive image features from scale-invariant keypoints. Inte. Jour. of Computer Vision, 60(2): 91–110.
    Martinec, D. and Pajdla, T. 2002. Structure from Many Perspective Images with Occlusion. In Proc. European Conf. Computer Vision, pp. 355-369.
    Matas, J. and Chum, O. 2004. Randomized RANSAC with Td,d test. Image and Vision Computing, 22(10): 837-842.
    Matas, J. and Chum, O. 2005. Randomized RANSAC with sequential probability ratio test. In IEEE Proc. Inte. Conf. on Computer Vision, 2: 1727-1732.
    Miller, J.V. and Stewart, C.V. 1996. MUSE: robust surface fitting using unbiased scale estimates. In IEEE Proc. Inter. Conf. on Computer Vision and Pattern Recognition, pp. 300-306.
    Negahdaripour, S. 1998. Revised definition of optical flow: Integration of radiometric and geometric cues for dynamic scene analysis. IEEE Trans. Pat. Anal. and Mach. Intel., 20(9): 961-979.
    Nister, D. 2003. Preemptive RANSAC for live structure and motion estimation. In IEEE Proc. International Conf. on Computer Vision, (1): 199-206.
    Pollefeys, M., Koch, R., and Gool, L.V. 1998. Self-Calibration and Metric Reconstruction in spite of Varying and Unknown Intrinsic Camera Parameters. In IEEE Proc. International Conf. on Computer Vision, pp.90-95.
    Rousseeuw, P.J. 1984. Least median of squares regression. Journal of the American Statistical Association, 79: 871-880.
    Rousseeuw, P.J. and Croux, C. 1993. Alternatives to the median absolute derivation. Journal of the American Statistical Association, 88(424): 1273-1283.
    Rousseeuw, P.J. and Leroy, A. 1987. Robust Regression and Outlier Detection. John Wiley & Sons, New York.
    Silverman B.W. 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall.
    Stewart, C.V. 1995. MINPRAN: A New Robust Estimator for Computer Vision. IEEE Trans. Pat. Anal. and Mach. Intel., 17(10): 925-938.
    Stewart, C.V. 1997. Bias in robust estimation caused by discontinuities and multiple structures. IEEE Trans. Pat. Anal. and Mach. Intel., 19(8): 818-833.
    Sturm, P. and Triggs, B. 1996. A factorization based algorithm for multi-image projective structure and motion. In Proc. European Conf. on Computer Vision, (II): 709–720.
    Subbarao, R. and Meer, P. 2006. Beyond RANSAC: user independent robust regression. In IEEE Proc. Computer Vision and Pattern Recognition Workshop (25 Years of RANSAC).
    Teng, C.H., Lai, S.H., Chen, Y.S., Hsu, W.H. 2005. Accurate optical flow computation under non-uniform brightness variations. Computer Vision and Image Understanding, 97: 315-346.
    Tomasi, C. and Kanade, T. 1992. Shape and motion from image streams under orthography: a factorization approach. Inte. Jour. of Computer Vision, 9(2): 137-154.
    Tordoff, B. and Murray, D. 2002. Guided sampling and consensus for motion estimation. In Proc. European Conf. on Computer Vision, (I): 82-96.
    Torr, P.H.S. 2002. Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting. Inte. Jour. of Computer Vision, 50(1): 35–61.
    Torr, P.H.S. and Murray, D. 1997. The development and comparison of robust methods for estimating the fundamental matrix. Inte. Jour. of Computer Vision, 24(3): 271-300.
    Torr, P.H.S. and Davidson, C. 2003. IMPSAC: synthesis of importance sampling and random sample consensus. IEEE Trans. Pat. Anal. and Mach. Intel., 25(3): 354–364.
    Torr, P.H.S. and Zisserman, A. 2000. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78: 138–156.
    Torre, F.D. and M.J. Black. 2001. Robust principal component analysis for computer vision. In IEEE Proc. International Conf. on Computer Vision, V1: 362–369.
    Torre, F.D. and Black, M.J. 2003. A Framework for Robust Subspace Learning. Inter. Jour. of Computer Vision, 54: 117-142.
    Yu, X., Bui, T.D., and Krzyzak, A. 1994. Robust estimation for range image segmentation and reconstruction. IEEE Trans. Pat. Anal. and Mach. Intel., 16(5): 530-538.
    Wang, H. and Suter, D. 2003a. MDPE: a very robust estimator for model fitting and range image segmentation. Inte. Jour. of Computer Vision, 59(2): 139-166.
    Wang, H. and Suter, D. 2003b. Variable bandwidth QMDPE and its application in robust optical flow estimation. In IEEE Proc. International Conf. on Computer Vision, 1: 178-183.
    Wang, H. and Suter, D. 2004. Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans. Pat. Anal. and Mach. Intel., 26(11): 1459-1474.
    Wiberg, T. 1976. Computation of principal components when data is missing. In Proc. Second Symp. Computational Statistics, pp. 229-236.
    Zhang, Z. 1997. Parameter estimation techniques: a tutorial with application to conic fitting. Image and Vision Computing Journal, 15(1): 59-76.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE