研究生: |
洪木成 Mu-Cheng Hung |
---|---|
論文名稱: |
雙亞硝基鐵化合物(DNIC)之合成與反應性:{Fe(NO)2}10與{Fe(NO)2}9的轉化與結構辨別 Synthesis and Reactivity of {Fe(NO)2}10 Dinitrosyl Iron Complexes: Transformation and Structural Discrimination between {Fe(NO)2}10 DNIC and {Fe(NO)2}9 DNIC |
指導教授: |
廖文峰
Wen-Feng Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 雙亞硝基鐵化合物 、十個電子 、一氧化氮 |
外文關鍵詞: | DNIC, Nitric xodie, nitrosylation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以Fe(CO)2(NO)2為起始物,分別與sparteine跟tetramethylethylenediamine (TMEDA)在THF溶劑下反應,可得到產物無EPR訊號的逆磁、電中性的雙亞硝基鐵化合物(DNIC)[(sparteine)Fe(NO)2] (1) 與 [(TMEDA)Fe(NO)2] (2)。[(sparteine)Fe(NO)2]可以提供{Fe(NO)2}10與[PPN][Fe(NO)(S,S-C6H4)2]反應形成[PPN][Fe(NO)(S,S-C6H4)2Fe(NO)2]。
陽離子的{Fe(NO)2}9錯合物[(sparteine)Fe(NO)2][BF4] (3) 來自化合物1與 [NO][BF4]在CH3CN中的反應。化合物3可以與thiolate, carboxylate, and imidzole species反應,產生DNIC。同時,化合物1與3跟rubredoxin反應可以產生DNIC或是RRE(Roussin’s red ester)。穩定的{Fe(NO)2}9 DNIC [(S(CH2)3S)Fe(NO)2]- (4)來自化合物3與雙芽的[S(CH2)3S]2-配位基的反應。 透過化合物3從中性的化合物1轉變成化合物4。Rubredoxin與化合物1/3的反應亦產生DNIC或RRE。其中,化合物3 作為{Fe(NO)2}的提供者。 而化合物3 的EPR光譜在298K顯示g = 2.032 {Fe(NO)2}9 DNICs的特徵訊號。
在經單晶繞射後比較{Fe(NO)2}9與{Fe(NO)2}10 N-O與Fe-N(O)的鍵長,{Fe(NO)2}10 DNICs 的N-O平均鍵長落在1.214(6)-1.189(4) □之間,Fe-N(O)的鍵長則落在1.650(7)-1.638(3) □之間;在{Fe(NO)2}9的情形則是N-O平均鍵長落在1.178(3) to 1.160(6) □之間,Fe-N(O)的鍵長則落在1.695(3) to 1.661(4) □之間。除此之外, IR νNO (νNO收縮頻率的相對位置與差距)可以當作分辨陰陽離子態或電中性的{Fe(NO)2}9 DNICs與{Fe(NO)2}10 DNICs有效工具。
Reaction of Fe(CO)2(NO)2 and sparteine/tetramethylethylenediamine (TMEDA) in tetrahydrofuran afforded the electron paramagnetic resonance (EPR)-silent, neutral {Fe(NO)2}10 dinitrosyl iron complexes (DNICs) [(sparteine)Fe(NO)2] (1) and [(TMEDA)Fe(NO)2] (2), respectively. Furthermore,□eaction of [(sparteine)Fe(NO)2] and [PPN][Fe(NO)(S,S-C6H4)2] yielded [PPN][Fe(NO)(S,S-C6H4)2Fe(NO)2].
The cationic {Fe(NO)2}9 complex [(sparteine)Fe(NO)2][BF4] (3) was obtained from the reaction of complex 1 and [NO][BF4] in CH3CN. Reaction of complex 3 and ligands including thiolate, carboxylate, and imidzole species implicated the formation of DNICs. Meanwhile, DNIC or RRE were obtained from the reaction of complex 1/3 and rubredoxin. The stable and isolable anionic {Fe(NO)2}9 DNIC [(S(CH2)3S)Fe(NO)2]- (4), with a bidentate alkylthiolate coordinated to a {Fe(NO)2} motif, was prepared by the reaction of [S(CH2)3S]2- and the complex 3. Transformation from the neutral complex 1 to the anionic complex 4 was verified via the cationic complex 3. Here complex 3 acts as an {Fe(NO)2}-donor reagent in the presence of thiolates. The EPR spectra of complex 3 exhibit an isotropic signal with g = 2.032 at 298 K, respectively, the characteristic g value of {Fe(NO)2}9 DNICs.
On the basis of N-O/Fe-N(O) bond lengths of the single-crystal X-ray structures of the {Fe- (NO)2}9/{Fe(NO)2}10 DNICs, the oxidation level of the {Fe(NO)2} core of DNICs can be unambiguously assigned. The mean N-O distances falling in the range of 1.214(6)-1.189(4) □ and the Fe-N(O) bond distances in the range of 1.650(7)-1.638(3) □ are assigned as the neutral {Fe(NO)2}10 DNICs. In contrast, the mean N-O bond distances ranging from 1.178(3) to 1.160(6) □ and the mean Fe-N(O) bond distances ranging from 1.695(3) to 1.661(4) □ are assigned as the anionic/neutral/cationic {Fe(NO)2}9 DNICs. In addition, an EPR spectrum in combination with the IR νNO (the relative position of the νNO stretching frequencies) and their difference NO spectrum may serve as an efficient tool for discrimination of the existence of the anionic/cationic/neutral {Fe(NO)2}9 DNICs and the neutral {Fe(NO)2}10 DNICs.
(1) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mulsch, A. J. Biol. Chem. 1995, 207, 29244-29249.
(2) Ding, H.; Demple, B. Proc. Natl Acad. Sci. U S A. 2000, 97, 5146-5150.
(3) Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699-2704.
(4) Soum, E.; Brazzolotto, X.; Goussias, C.; Bouton, C.; Moulis, J.-M.; Mattioli, T. A.; Drapier, J.-C. Biochemistry 2003, 42, 7648 - 7654.
(5) Kennedy, M. C.; Antholine, W. E.; Beinert, H. J. Biol. Chem. 1997, 272, 20340–20347.
(6) Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K. EMBO J. 2002, 21, 3235–3244.
(7) Welter, R.; Yu, L.; Yu, C.-A. Arch. Biochem. Biophys. 1996, 331, 9-14.
(8) Eleonora Cesareo, L. J. P., Jens Z. Pedersen,Marzia Nuccetelli, Anna P. Mazzetti, Anna Pastore Giorgio Federici, Anna M. Caccuri, Giorgio Ricci, Julian J. Adams,Michael W. Parker, and Mario Lo Bello J. Biol. Chem. 2005, 280, 42172-42180.
(9) Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, N. D. Biochemistry 1994, 33, 3679-3687.
(10) D’Autre´aux, B. t.; Horner, O.; Oddou, J.-L.; Jeandey, C.; Gambarelli, S.; Berthomieu, C.; Latour, J.-M.; Michaud-Soret, I. J. Am. Chem. Soc 2004, 126, 6005-6016.
(11) Goussias, C.; Deligiannakis, Y.; Sanakis, Y.; Ioannidis, N.; Petrouleas, V. Biochemistry 2002, 41, 15212 - 15223.
(12) Zahn, J. A.; Arciero, D. M.; Hooper, A. B.; DiSpirito, A. A. FEBS Lett 1996, 397, 35-38.
(13) Koshland, D. E. Science 1992, 258, 1861.
(14) Lepoivre, M.; Fieschi, F.; Coves, J.; Thelander, L.; Fontecave, M. Biochem. Biophys. Res. Commun. 1991, 179, 442-448.
(15) Harvey, E. M.; Jonathan, S. S. Biochemistry 2001, 40, 1688-1693.
(16) Gross, S. S.; Wolin, M. S. Annu. Rev. Physiol. 1995, 57, 737-769.
(17) Bogdan, C. Nat Immunol. 2001, 2, 907-916.
(18) Radi, R. Chem. Res. Toxicol. 1995, 9, 828-835.
(19) McDonald, C. C.; Philips, W. D.; Mower, H. F. J. Am. Chem. Soc. 1965, 87, 3319-3326.
(20) Basosi, R.; Gaggelli, E.; Tiezzi, E.; Valensin, G. J. Chem. Soc., Perkin Trans 2 1975, 5, 423-428.
(21) McCleverty, J. A. Chem Rev 2004, 104, 403-418.
(22) Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Biochem J. 2001, 357, 593-615.
(23) Dejam, A.; Hunter, C. J.; Schechter, A. N.; Gladwin, M. T. Blood Cells, Molecules, and Diseases 2004, 32, 423-429.
(24) Millar, T. M.; Stevens, C. R.; Blake, D. R. Biochem. Soc. Trans. 1997, 25, 528S.
(25) Bryan, N. S.; Fernandez, B. O.; Bauer, S. M.; Garcia-Saura, M. F.; Milsom, A. B.; Rassaf, T.; Maloney, R. E.; Bharti, A.; Rodriguez, J.; Feelisch, M. Nature Chemical Biology 2005, 1, 290-297.
(26) Wink, D. A.; Mitchell, J. B. Free Radical Biology & Medicine 1998, 25, 434-456.
(27) Mikkelsen, R. B.; Wardman, P. Oncogene 2003, 22, 5734-5754.
(28) Bronte, V.; Zanovello, P. Nat Rev Immunol 2005, 5, 641-54.
(29) Bouton, C.; Drapier, J.-C. Sci. STKE. 2003, 182, pe17 - 17.
(30) T.Hess, D.; Matsumoto, A.; Kim, S.-O.; E.Marshall, H.; Stamler, J. S. Nat Rev Mol Cell Biol. 2005, 6, 150-166.
(31) Nilius, B.; T. Voets; Peters, J. Sci STKE 2001, 86, re8 - re8.
(32) DingDagger, K.; Mani, K.; Cheng, F.; Belting, M.; Fransson, L.-A. J. Biol. Chem. 2002, 277, 33353-33360.
(33) Vanin, A. F.; Papina, A. A.; Serezhenkov, V. A.; Koppenolb, W. H. Nitric Oxide 2004, 10, 60 - 73.
(34) Hobbs, A. J. TiPS 1997, 18, 484-491.
(35) Boon, E. M.; Marletta, M. A. J. Inorg. Biochem. 2005, 99, 892-902.
(36) Schmidt; H.H.H.W. FEBS Lett 1992, 307, 102-107.
(37) Dmitry A. Rodionov, I. L. D., Adam P. Arkin, Eric J. Alm, Mikhail S. Gelfand PLoS Comput Biol. 2005, 1, 415-431.
(38) D'Autr□aux, B.; Tucker, N. P.; Dixon, R.; Spiro, S. Nature 2005, 437, 769-772.
(39) GardnerDagger, A. M.; Gessner, C. R.; Gardner, P. R. J. Biol. Chem. 2003, 278, 10081-10086.
(40) Mills, S. A.; Marletta, M. A. Biochemistry 2005, 44, 13553-13559.
(41) Pecqueur, L.; D'Autr□aux, B.; Dupuy, J.; Nicolet, Y.; Jacquamet, L.; Brutscher, B.; Michaud-Soret, I.; Bersch, B. J. Biol. Chem. 2006, accepted.
(42) D'Autr□aux, B.; Touati, D.; Bersch, B.; Latour, J.-M.; Michaud-Soret, I. Proc. Natl Acad. Sci. USA 2002, 99, 16619–16624.
(43) Demple, B. Clinical and Experimental Pharmacology and Physiology 1999, 26, 64–68.
(44) Oliveira, L.; Drapier, J.-C. Proc. Natl Acad. Sci. U S A. 2000, 97, 6550–6555.
(45) Rogers, P. A.; Eide, L.; Klungland, A.; Ding, H. DNA Repair 2003, 2, 809–817.
(46) Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc. 1999, 121, 5146-5150.
(47) Bryar, T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917-1926.
(48) Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. Proc. Natl Acad. Sci. USA 2006, 103, 7670-7675.
(49) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627-2632.
(50) McBride, D. W.; Stafford, S. L.; Stone, F. G. A. Inorg. Chem. 1962, 1, 386-388.
(51) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217-10218.
(52) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159-5167.
(53) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872 -5881.
(54) Atkinson, F. L.; Blackwell, H. E.; Brown, N. C.; Connelly, N. G.; Crossley, J. G.; Orpen, A. G.; Rieger, A. L.; Rieger, P. H. J. Chem. Soc., Dalton Trans. 1996, 3491-3502.
(55) Rauchfuss, T. B.; Weatherill, T. D. Inorg. Chem. 1982, 827-830.
(56) Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem 1974, 413-422.
(57) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H.; Darensbourg, M. Y. Inorg. Chem. 2000, 39, 480-484.
(58) Chen, T.-N.; Lo, F.-C.; Tsai, M.-L.; Shih, K.-N.; Chiang, M.-H.; Lee, G.-H.; Liaw, W.-F. Inorg. Chim. Acta. 2006, 359, 2525-2533.
(59) Jo, D.-H.; Chiou, Y.-M.; Que, L., Jr. Inorg. Chem. 2001, 3181-3190.
(60) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583-6585.
(61) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc 2004, 126, 10867-10874.
(62) Vasil'eva, S. V.; Sanina, N. A.; Moshkovskaya, E. Y.; Rudneva, T. N.; Kulikov, A. V.; Aldoshin., S. M. Dokl. Biol. Sci. 2005, 402, 230-232.
(63) Jaworska, M.; Stasicka, Z. J. Organomet. Chem. 2004, 689, 1702-1713.
(64) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch 1986, 1357-1362.
(65) Chen, H.-W.; Lin, C.-W.; Chen, C.-C.; Yang, L.-B.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 3226-3232.