簡易檢索 / 詳目顯示

研究生: 吳孟臻
Wu, Meng-Chen
論文名稱: KDM4B與c-Jun共同調控胃癌演進
KDM4B cooperates with c-Jun to promote gastric carcinogenesis
指導教授: 王雯靜
Wang, Wen-Ching
口試委員: 龔行健
Kung, Hsing-Jien
陳瑞華
Chen, Ruey-Hwa
藍忠昱
Lan, Chung-Yu
蔡亭芬
Tsai, Ting-Fen
施修明
Shih, Hsiu-Ming
高承源
Kao, Cheng-Yuan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 81
中文關鍵詞: 胃幽門螺旋菌表關遺傳學細胞激素發炎反應
外文關鍵詞: Helicobacter pylori, epigenetics, cytokine, inflammation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組蛋白離胺酸去甲基酶KDM4A–D對於移除抑制性組蛋白離胺酸上的甲基團進而促進基因活化、癌細胞生長及癌症轉移扮演重要的表觀遺傳調控者。KDM4A與KDM4B經常過度表現於胃癌中。介白素-8 (IL-8),一種促炎性趨化介素,也大量表現於胃癌中並與化療抗性及上皮間質轉化相關。值得注意的,受到病原體CagA陽性胃幽門螺蜁菌感染促使大量IL-8產生。然而,表觀遺傳調控者對於調控胃癌中胃幽門螺蜁菌引起的IL-8表現及致癌作用的機制仍不清楚。在本研究中,我們證實KDM4B顯著地激活IL-8產生,而非KDM4A/4C參與其中。細胞受到胃幽門螺蜁菌感染後則有更明顯地影響。西方墨點微陣列分析顯示JNK途徑對於KDM4B調控的IL-8產生是很重要的。此外,我們發現KDM4B藉由N端與c-Jun結合。染色質免疫沈澱分析顯示KDM4B與c-Jun共同調控IL-8、MMP1及ITGAV啟動子。IL-8啟動子活性分析顯示IL-8轉錄激活活性需要透過KDM4B去甲基化活性。與受到胃幽門螺蜁菌感染的AGS細胞相比,KDM4B的缺失導致透過胃幽門螺旋菌第四型分泌系統所需的整合素αV表現量下降及轉位的CagA下降進而減少IL-8產生及抑制創傷癒合能力。在胃癌中,高度KDM4B表現與c-Jun磷酸化程度連接到較差的臨床結果。綜合以上,我們的結果顯示KDM4B是c-Jun重要的表觀遺傳共活化者,一起共同參與胃幽門螺旋菌引起的反應。KDM4B可以作為一個具有潛力的胃癌治療標的。


    Histone lysine demethylase 4 members (KDM4A–D) are important epigenetic regulators which remove repressive methyl marks from histone lysines to promote gene activation, cancer cell growth and metastasis. KDM4A and KDM4B are often overexpressed in gastric cancer. Interleukin-8 (IL-8), a pro-inflammatory chemokine, is also overexpressed in gastric cancer, which is correlated with chemo-resistance and epithelial-to-mesenchymal transition. Of note, infection with CagA-positive Helicobacter pylori, an etiologic agent of gastric cancer, promotes the production of IL-8. However, the role of the epigenetic regulator in modulating H. pylori-induced IL-8 expression and tumorigenesis in gastric cancer remains unclear. In this study, we report that KDM4B, rather than KDM4A/4C, significantly activates IL-8 production. An even more pronounced effect is seen in cells challenged with H. pylori. Micro-western analysis reveals that JNK pathway is important for KDM4B-mediated IL-8 production. Furthermore, we show that KDM4B interacts with c-Jun through its N-terminal domain. ChIP analysis reveals that KDM4B and c-Jun are co-recruited to the promoter region of IL-8, MMP1, and ITGAV. IL-8 promoter activity analysis reveals that the demethylase activity of KDM4B is essential in the IL-8 transactivation activity. As compared with H. pylori-infected AGS cells, the depletion of KDM4B downregulates the level of CagA translocation through integrin αV encoded by ITGAV, thereby reducing the level of IL-8 production and wound healing effect. The high levels of KDM4B and p-c-Jun are associated with a poorer clinical outcome in gastric cancer patients. Together, our results highlight that KDM4B is a crucial epigenetic co-activator of c-Jun, which cooperate together in response to H. pylori challenge. KDM4B thus serves as a potential therapeutic target in gastric cancer.

    致謝......i 中文摘要......iii Abstract......v Abbreviation......vii List of Figures......xi List of Tables......xiii Chapter 1. Introduction......1 1.1 The role of epigenetics in cancer development......1 1.2 The development and treatment of Gastric cancer......3 1.3 Gastric pathogen: Helicobacter pylori......5 1.4 Inflammatory response in tumor microenvironment......8 1.5 The objective of this study......9 Chapter 2. Materials and Methods......11 2.1 Cell lines and cell culture......11 2.2 Bacteria and culture......11 2.3 Antibodies and reagents......11 2.4 Cell line establishment......12 2.5 Human cytokine array......13 2.6 Quantitative real-time PCR (qRT-PCR)......13 2.7 Human IL-8 ELISA......13 2.8 Cell elongated hummingbird phenotype......14 2.9 Immunoblotting analysis......14 2.10 Immunoprecipitation (IP)......15 2.11 Luciferase activity assay......15 2.12 Chromatin Immunoprecipitation (ChIP) assay......16 2.13 Small interfering RNA (siRNA) transfection......17 2.14 Microarray......17 2.15 Micro-western array (MWA)......18 2.16 Wound healing assay......18 2.17 Immunohistochemistry (IHC)......18 2.18 Kaplan Meier-plotter (KM-plotter) survival analysis......19 2.19 Statistical analysis......20 Chapter 3. Results......21 3.1 KDM4B increases IL-8 production in H. pylori-infected gastric cancer cells.......21 3.2 KDM4B mediates the expression of AP-1- and NF-B-regulated genes......22 3.3 JNK/c-Jun pathway is important for KDM4B-regulated IL-8 production......23 3.4 KDM4B interacts with c-Jun and regulates the IL-8 promoter activity......24 3.5 KDM4B and c-Jun are co-recruited on IL-8 and MMP1 loci......27 3.6 KDM4B mediates the translocation of CagA......28 3.7 KDM4B regulates the expression of ITGAV encoding integrin V to promote the translocation of CagA......29 3.8 KDM4B and p-c-Jun are associated with poorer clinical outcome in gastric cancer......31 Chapter 4. Conclusion and Discussion......33 References......38 Figures and Tables......47

    1. Thomas, M.L. and P. Marcato. Epigenetic Modifications as Biomarkers of Tumor Development, Therapy Response, and Recurrence across the Cancer Care Continuum. Cancers (Basel), 2018. 10(4).
    2. Holliday, R. The inheritance of epigenetic defects. Science, 1987. 238(4824): p. 163-70.
    3. Yang, W.Y., J.L. Gu, and T.M. Zhen. Recent advances of histone modification in gastric cancer. J Cancer Res Ther, 2014. 10 Suppl: p. 240-5.
    4. Eckschlager, T., et al. Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci, 2017. 18(7).
    5. Labbe, R.M., A. Holowatyj, and Z.Q. Yang. Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res, 2013. 6(1): p. 1-15.
    6. Berry, W.L. and R. Janknecht. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res, 2013. 73(10): p. 2936-42.
    7. Black, J.C., et al. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell, 2013. 154(3): p. 541-55.
    8. Han, F., et al. JMJD2B is required for Helicobacter pylori-induced gastric carcinogenesis via regulating COX-2 expression. Oncotarget, 2016. 7(25): p. 38626-38637.
    9. Wilson, C., et al. The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer. Oncogene, 2017. 36(18): p. 2565-2576.
    10. Yang, J., et al. The role of histone demethylase KDM4B in Myc signaling in neuroblastoma. J Natl Cancer Inst, 2015. 107(6): p. djv080.
    11. Shin, S. and R. Janknecht. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun, 2007. 359(3): p. 742-6.
    12. Wissmann, M., et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol, 2007. 9(3): p. 347-53.
    13. Coffey, K., et al. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res, 2013. 41(8): p. 4433-46.
    14. Berry, W.L., et al. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol, 2012. 41(5): p. 1701-6.
    15. Kawazu, M., et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One, 2011. 6(3): p. e17830.
    16. Mallette, F.A., et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J, 2012. 31(8): p. 1865-78.
    17. Wang, L.Y., et al. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Rep, 2016. 16(11): p. 3016-3027.
    18. Kim, T.D., et al. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem, 2012. 113(4): p. 1368-76.
    19. Mallette, F.A. and S. Richard. JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5. Cell Rep, 2012. 2(5): p. 1233-43.
    20. Li, H., et al. KDM4B plays an important role in mitochondrial apoptosis by upregulating HAX1 expression in colorectal cancer. Oncotarget, 2016. 7(36): p. 57866-57877.
    21. Chu, C.H., et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem, 2014. 57(14): p. 5975-85.
    22. IARC, World Cancer Report 2014, ed. B.W. Stewart and C.P. Wild. 2014, Lyon, France.
    23. Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49.
    24. Polkowski, W., et al. Prognostic value of Lauren classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol, 1999. 6(3): p. 290-7.
    25. Ma, J., et al. Lauren classification and individualized chemotherapy in gastric cancer. Oncol Lett, 2016. 11(5): p. 2959-2964.
    26. Hu, B., et al. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol, 2012. 3(3): p. 251-61.
    27. Yusefi, A.R., et al. Risk Factors for Gastric Cancer: A Systematic Review. Asian Pac J Cancer Prev, 2018. 19(3): p. 591-603.
    28. Ge, S., et al. Association between Habitual Dietary Salt Intake and Risk of Gastric Cancer: A Systematic Review of Observational Studies. Gastroenterol Res Pract, 2012. 2012: p. 808120.
    29. Fang, X., et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer, 2015. 51(18): p. 2820-32.
    30. Cai, M., et al. Environmental factors, seven GWAS-identified susceptibility loci, and risk of gastric cancer and its precursors in a Chinese population. Cancer Med, 2017. 6(3): p. 708-720.
    31. Camargo, M.C., et al. Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev, 2006. 15(9): p. 1674-87.
    32. Liu, W., et al. A functional SNP rs1892901 in FOSL1 is associated with gastric cancer in Chinese population. Sci Rep, 2017. 7: p. 41737.
    33. Machado, J.C., et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology, 2003. 125(2): p. 364-71.
    34. Xue, H., et al. A meta-analysis of interleukin-8 -251 promoter polymorphism associated with gastric cancer risk. PLoS One, 2012. 7(1): p. e28083.
    35. Naseem, M., et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev, 2018. 66: p. 15-22.
    36. Parsonnet, J., et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med, 1991. 325(16): p. 1127-31.
    37. Ajani, J.A., et al. Gastric adenocarcinoma. Nat Rev Dis Primers, 2017. 3: p. 17036.
    38. Sitarz, R., et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res, 2018. 10: p. 239-248.
    39. IARC. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum, 1994. 61: p. 1-241.
    40. Burkitt, M.D., et al. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech, 2017. 10(2): p. 89-104.
    41. Graham, D.Y. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology, 2015. 148(4): p. 719-31 e3.
    42. Zullo, A., et al. Follow-up of intestinal metaplasia in the stomach: When, how and why. World J Gastrointest Oncol, 2012. 4(3): p. 30-6.
    43. Tomb, J.F., et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47.
    44. Noto, J.M. and R.M. Peek, Jr. The Helicobacter pylori cag Pathogenicity Island. Methods Mol Biol, 2012. 921: p. 41-50.
    45. Kwok, T., et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 2007. 449(7164): p. 862-6.
    46. Naumann, M., et al. Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol, 2017. 25(4): p. 316-328.
    47. Colotta, F., et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009. 30(7): p. 1073-81.
    48. Sun, X., et al. Relationship between serum inflammatory cytokines and lifestyle factors in gastric cancer. Mol Clin Oncol, 2019. 10(3): p. 401-414.
    49. Epplein, M., et al. Circulating cytokines and gastric cancer risk. Cancer Causes Control, 2013. 24(12): p. 2245-50.
    50. Lee, K.E., et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol, 2013. 19(45): p. 8192-202.
    51. Waugh, D.J. and C. Wilson. The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735-41.
    52. Lai, C.H., et al. Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun, 2008. 76(7): p. 3293-303.
    53. Wang, H.J., et al. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol Microbiol, 2012. 83(1): p. 67-84.
    54. Ciaccio, M.F., et al. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods, 2010. 7(2): p. 148-55.
    55. Szasz, A.M., et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget, 2016. 7(31): p. 49322-49333.
    56. Crabtree, J.E., et al. Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol, 1995. 48(1): p. 41-5.
    57. Snider, J.L., et al. The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem, 2008. 283(20): p. 13952-63.
    58. Aihara, M., et al. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun, 1997. 65(8): p. 3218-24.
    59. Lai, C.H., et al. Helicobacter pylori CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett, 2011. 323(2): p. 155-63.
    60. De Luca, A., et al. Coexpression of Helicobacter pylori's proteins CagA and HspB induces cell proliferation in AGS gastric epithelial cells, independently from the bacterial infection. Cancer Res, 2003. 63(19): p. 6350-6.
    61. Brandt, S., et al. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9300-5.
    62. Kikuchi, K., et al. Helicobacter pylori stimulates epithelial cell migration via CagA-mediated perturbation of host cell signaling. Microbes Infect, 2012. 14(5): p. 470-6.
    63. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 1996. 12: p. 697-715.
    64. Li, W., et al. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer. Biochem Biophys Res Commun, 2011. 416(3-4): p. 372-8.
    65. Nagy, A., et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep, 2018. 8(1): p. 9227.
    66. Hu, C.E., et al. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Commun, 2014. 449(1): p. 1-7.
    67. Kim, J.G., et al. Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell. Biochim Biophys Acta, 2012. 1819(11-12): p. 1200-7.
    68. Zhang, J., et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer. Am J Transl Res, 2018. 10(2): p. 525-534.
    69. Wei, Z.W., et al. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett, 2015. 359(2): p. 335-43.
    70. Aldinucci, D. and A. Colombatti. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm, 2014. 2014: p. 292376.
    71. Cheng, W.L., et al. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol, 2011. 22(10): p. 2267-76.
    72. Sima, A.R., et al. Serum chemokine ligand 5 (CCL5/RANTES) level might be utilized as a predictive marker of tumor behavior and disease prognosis in patients with gastric adenocarcinoma. J Gastrointest Cancer, 2014. 45(4): p. 476-80.
    73. Slee, R.B., et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene, 2012. 31(27): p. 3244-53.
    74. Tamanini, A., et al. Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. Am J Physiol Lung Cell Mol Physiol, 2011. 300(3): p. L380-90.
    75. Bower, K.E., J.M. Fritz, and K.L. McGuire. Transcriptional repression of MMP-1 by p21SNFT and reduced in vitro invasiveness of hepatocarcinoma cells. Oncogene, 2004. 23(54): p. 8805-14.

    QR CODE