簡易檢索 / 詳目顯示

研究生: 呂淑甄
Lu, Shu-Chen
論文名稱: 金屬奈米粒子之形狀與異質磊晶之控制
Metal nanoparticles with controllable shape and heteroepitaxy
指導教授: 段興宇
口試委員: 湯學成
曾院介
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 金屬奈米粒子
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究以溶液合成法合成出金屬奈米粒子與金屬/半導體的異質結構,我們利用磷酸三辛脂(TOP)以及油胺於高溫下還原氯化亞銅,再藉由熱注射法將奈米粒子的成核與成長階段分開,進而得到形狀與尺寸均一的銅奈米粒子。我們利用SEM與TEM觀察奈米粒子的表面形貌與投影影像,以X光繞射圖譜分析各結晶面的情形,再利用高解析電子能譜儀與傅立葉轉換紅外光譜儀探討產物的表面性質。而由於奈米銅是另一個於可見光區域具有表面電漿共振特性的貴重金屬,於是我們也利用UV可見光譜儀與暗場散射顯微鏡來探討其光學性質。
    而在金屬與半導體異質結構的合成控制上,我們利用陽離子交換技術得到金與硒化鎘的核殼結構,除此之外,我們也藉由調整硝酸鎘加入的量來控制殼層厚度。我們利用高解析TEM,SAED及EDX分析產物的結晶結構與組成,並利用UV可見光譜儀探討產物殼層厚度與光學性質的關係。最後,我們將此異質結構應用在光催化的測試上,並探討電荷分離的機制與不同殼層厚度對光催化效率的影響。


    This study aims to obtain metal nanoaprticles and metal@semiconductor core-shell heterostructures. With controllable shape and size were used to TOP and oleylamine to reduce copper chloride at high temperature, and separate the nucleation and growth process by a hot injection method to obtain the Cu nanoparticles with monodispersity in size and shape. We characterize the morphology and the projected image of nanoparticles via SEM and TEM. X-ray diffraction patterns were used to analyze the crystalline structure of products, and to study their surface properties via both XPS and FTIR measurements. Nanosized Cu is a noble metal known to display localized surface plasmon resonance (LSPR) in the visible region. Hence, we investigated their optical properties by UV-visible spectroscopy and characterize the optical properties of single particle via dark-field microscopy.
    We obtained Au@CdSe core-shell nanorods by applying a catoin-exchange strategy. The shell thickness of products can be tuned by adding different amount of Cd(NO3)2. We used HRTEM, SAED and EDX analysis to verify the crystallographic geometry and composition of the products. We also discussed the relationship between shell thickness and optical property via UV-visible spectroscopy. Finally, the charge transfer phenomenon between Au and CdSe was investigated by different extinction sources, including UV light and a 532 laser.

    中文摘要 I Abstract II 誌謝 III Table of Contents IV List of Figures VI Chapter 1. Thesis Introdution 1 Chapter 2 5 Synthesis of Cu octahedron and their single particle optical property 5 2-1 Introduction 5 2-2. Experimental section 12 2-2-1 Chemicals. 12 2-2-2 Synthesis of Cu Nanoctahedrons. 12 2-2-3 Characterization. 12 2-3. Results and Discussion 14 Appendix 22 Reference 25 Chapter 3 31 Synthesis of hybrid Au@CdSe nanorods with charge transfer apply in photocatalysis. 31 3-1 Introduction 31 3-2 Experimental section 39 3-2-1 Chemicals. 39 3-2-2 Experiment 39 3-2-3 Characterization. 41 3-3 Results and Discussions 42 3-4. Conclusion 55 Appendix 56 Reference 58

    1. Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15 (10), 1957-1962.
    2. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T., A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society 2008, 130 (5), 1676-1680.
    3. Li, J.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N., Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catalysis 2012, 3 (1), 47-51.
    4. Wei, Y.; Klajn, R.; Pinchuk, A. O.; Grzybowski, B. A., Synthesis, Shape Control, and Optical Properties of Hybrid Au/Fe3O4 “Nanoflowers”. Small 2008, 4 (10), 1635-1639.
    5. Liu; Guyot-Sionnest, P., Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods. The Journal of Physical Chemistry B 2004, 108 (19), 5882-5888.
    6. Xiang, Y.; Wu, X.; Liu, D.; Li, Z.; Chu, W.; Feng, L.; Zhang, K.; Zhou, W.; Xie, S., Gold Nanorod-Seeded Growth of Silver Nanostructures:  From Homogeneous Coating to Anisotropic Coating. Langmuir 2008, 24 (7), 3465-3470.
    7. Mandal, S.; Selvakannan, P. R.; Pasricha, R.; Sastry, M., Keggin Ions as UV-Switchable Reducing Agents in the Synthesis of Au Core−Ag Shell Nanoparticles. Journal of the American Chemical Society 2003, 125 (28), 8440-8441.
    8. Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N., A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Letters 2006, 6 (4), 875-881.
    9. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S., Dumbbell-like Bifunctional Au−Fe3O4 Nanoparticles. Nano Letters 2005, 5 (2), 379-382.
    10. Zhang, L.; Blom, D. A.; Wang, H., Au–Cu2O Core–Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties. Chemistry of Materials 2011, 23 (20), 4587-4598.
    11. Lee, J.-S.; Shevchenko, E. V.; Talapin, D. V., Au−PbS Core−Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intra-particle Charge Transfer. Journal of the American Chemical Society 2008, 130 (30), 9673-9675.
    12. Jakob, M.; Levanon, H.; Kamat, P. V., Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles:  Determination of Shift in the Fermi Level. Nano Letters 2003, 3 (3), 353-358.
    13. Tian, Z.-Q.; Zhang, Z.-L.; Jiang, P.; Zhang, M.-X.; Xie, H.-Y.; Pang, D.-W., Core/Shell Structured Noble Metal (Alloy)/Cadmium Selenide Nanocrystals. Chemistry of Materials 2009, 21 (14), 3039-3041.
    14. Talapin, D. V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals. The Journal of Physical Chemistry B 2004, 108 (49), 18826-18831.
    15. Cao; Banin, U., Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores. Journal of the American Chemical Society 2000, 122 (40), 9692-9702.
    16. Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Philip, R.; Vijayamohanan, K.; Pradeep, T., Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core−Shell Nanoparticles:  One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties. Langmuir 2003, 19 (8), 3439-3445.
    17. Zhang, N.; Liu, S.; Fu, X.; Xu, Y.-J., Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity. The Journal of Physical Chemistry C 2011, 115 (18), 9136-9145.
    18. Wu, X.-F.; Song, H.-Y.; Yoon, J.-M.; Yu, Y.-T.; Chen, Y.-F., Synthesis of Core−Shell Au@TiO2 Nanoparticles with Truncated Wedge-Shaped Morphology and Their Photocatalytic Properties. Langmuir 2009, 25 (11), 6438-6447.
    19. Chen, W.-T.; Yang, T.-T.; Hsu, Y.-J., Au-CdS Core−Shell Nanocrystals with Controllable Shell Thickness and Photoinduced Charge Separation Property. Chemistry of Materials 2008, 20 (23), 7204-7206.
    20. Sun, Z.; Yang, Z.; Zhou, J.; Yeung, M. H.; Ni, W.; Wu, H.; Wang, J., A General Approach to the Synthesis of Gold–Metal Sulfide Core–Shell and Heterostructures. Angewandte Chemie International Edition 2009, 48 (16), 2881-2885.
    21. Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U., Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets. Advanced Materials 2008, 20 (22), 4312-4317.
    22. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Letters 2003, 3 (4), 555-560.
    23. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2−Au Composite Nanoparticles. Langmuir 2002, 19 (2), 469-474.
    24. Tian, Y.; Tatsuma, T., Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. Journal of the American Chemical Society 2005, 127 (20), 7632-7637.
    25. Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A., Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 2004, 3 (9), 601-605.
    26. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U., Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods. Science 2004, 304 (5678), 1787-1790.
    27. Habas, S. E.; Yang, P.; Mokari, T., Selective Growth of Metal and Binary Metal Tips on CdS Nanorods. Journal of the American Chemical Society 2008, 130 (11), 3294-3295.
    28. Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U., Au Growth on Semiconductor Nanorods: Photoinduced versus Thermal Growth Mechanisms. Journal of the American Chemical Society 2009, 131 (47), 17406-17411.
    29. Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U., Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe−Au Nanodumbbells. Nano Letters 2008, 8 (2), 637-641.
    30. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U., Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 2005, 4 (11), 855-863.
    31. Fan, F.-R.; Ding, Y.; Liu, D.-Y.; Tian, Z.-Q.; Wang, Z. L., Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals. Journal of the American Chemical Society 2009, 131 (34), 12036-12037.
    32. Li, J.; Zeng, H. C., Size Tuning, Functionalization, and Reactivation of Au in TiO2 Nanoreactors. Angewandte Chemie International Edition 2005, 44 (28), 4342-4345.
    33. Shi, W.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M. T.; Prasad, P. N., Anisotropic Growth of PbSe Nanocrystals on Au–Fe3O4 Hybrid Nanoparticles. Advanced Materials 2006, 18 (14), 1889-1894.
    34. Son, D. H.; Hughes, S. M.; Yin, Y.; Paul Alivisatos, A., Cation Exchange Reactions in Ionic Nanocrystals. Science 2004, 306 (5698), 1009-1012.
    35. Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L.-W.; Alivisatos, A. P., Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange. Science 2007, 317 (5836), 355-358.
    36. Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L.-W.; Alivisatos, A. P., Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. Journal of the American Chemical Society 2009, 131 (14), 5285-5293.
    37. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N., Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society 2012, 134 (36), 15033-15041.
    38. Tian, Y.; Tatsuma, T., Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chemical Communications 2004, (16), 1810-1811.
    39. Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M., Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. Journal of the American Chemical Society 2007, 129 (48), 14852-14853.
    40. Dawson, A.; Kamat, P. V., Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles. The Journal of Physical Chemistry B 2001, 105 (5), 960-966.
    41. Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y., Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Journal of the American Chemical Society 2007, 129 (15), 4538-4539.
    42. Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y., Au−ZnO Hybrid Nanopyramids and Their Photocatalytic Properties. Journal of the American Chemical Society 2011, 133 (15), 5660-5663.
    43. Hirakawa, T.; Kamat, P. V., Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters under UV−Irradiation. Journal of the American Chemical Society 2005, 127 (11), 3928-3934.
    44. Yang, T.-T.; Chen, W.-T.; Hsu, Y.-J.; Wei, K.-H.; Lin, T.-Y.; Lin, T.-W., Interfacial Charge Carrier Dynamics in Core−Shell Au-CdS Nanocrystals. The Journal of Physical Chemistry C 2010, 114 (26), 11414-11420.
    45. Yang, J. L.; An, S. J.; Park, W. I.; Yi, G. C.; Choi, W., Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal–Organic Chemical Vapor Deposition. Advanced Materials 2004, 16 (18), 1661-1664.
    46. Sykora, M.; Petruska, M. A.; Alstrum-Acevedo, J.; Bezel, I.; Meyer, T. J.; Klimov, V. I., Photoinduced Charge Transfer between CdSe Nanocrystal Quantum Dots and Ru−Polypyridine Complexes. Journal of the American Chemical Society 2006, 128 (31), 9984-9985.
    47. Wang, P.; Abrusci, A.; Wong, H. M. P.; Svensson, M.; Andersson, M. R.; Greenham, N. C., Photoinduced Charge Transfer and Efficient Solar Energy Conversion in a Blend of a Red Polyfluorene Copolymer with CdSe Nanoparticles. Nano Letters 2006, 6 (8), 1789-1793.
    48. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295 (5564), 2425-2427.
    49. Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K., Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods. The Journal of Physical Chemistry C 2012, 116 (44), 23653-23662.
    50. Dloczik, L.; Könenkamp, R., Nanostructure Transfer in Semiconductors by Ion Exchange. Nano Letters 2003, 3 (5), 651-653.
    51. Liu, M.; Guyot-Sionnest, P., Preparation and optical properties of silver chalcogenide coated gold nanorods. Journal of Materials Chemistry 2006, 16 (40), 3942-3945.
    52. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE