簡易檢索 / 詳目顯示

研究生: 吳調原
Tiao-Yuan Wu
論文名稱: 應用散熱座與多孔性材質相似性法則於散熱座性能之最佳化研究
Thermal Performance Optimization for Heat Sinks by Using a Heat Sink/Porous Medium Similarity Method
指導教授: 洪英輝
Ying-Huei Hung
傅建中
Chien-Chung Fu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 382
中文關鍵詞: 散熱座多孔性材質相似性最佳化研究部分限制散熱座
外文關鍵詞: heat sink, porous medium, similarity method, optimization, partially-confined heat sink
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究首先針對部分限制散熱座在渠道內自然對流及強制對流下之熱流特性作一系列的理論與實驗探討。在自然對流實驗中,相關參數包括葛拉雪夫數(GrH),上側旁通比(Htb / Hch)及側邊旁通比(Wsb / Wch);其參數範圍則為GrH = 3.0X107 ~ 9.0X107, Wsb / Wch = 0.00 ~ 0.55及 Htb / Hch = 0.28 ~ 0.83。在強制對流中,相關參數分別為葛拉雪夫數(GrH),雷諾數(Rech),上側旁通比(Htb / Hch)及側邊旁通比(Wsb / Wch );其參數範圍為GrH = 5.5X108 ~ 1.6X109, Rech = 20209 ~ 40073, Wsb / Wch = 0.00 ~ 0.55與Htb/Wch = 0.28 ~ 0.83。在研究中,則有系統地探討這些相關參數對於熱流特性的影響。
    有關於流場及熱傳特性探討之內容及成果分別敘述如下:(一) 在流場特性方面,研究發現散熱座內平均流速與槽道入口流速之比值(Vs/Vin)受到Rech,Wsb / Wch 及Htb / Hch三個參數很顯著的影響;而上側旁通或側邊旁通內平均流速與槽道入口流速之比值(Vtb/Vin或Vsb/Vin)則只受到Rech顯著的影響,而Wsb / Wch 及Htb / Hch的影響並不顯著。經由此參數探討,研究中提出了上述三種流速比值與相關影響參數之新的經驗關係式。在本論文中更進一步地探討這三個參數對壓降及等效摩擦係數的影響;進而也提出準確估算壓降及等效摩擦係數之新的經驗公式。(二) 在熱傳特性方面,局部紐塞數在自然對流中由於在散熱座基部熱擴散效應影響,以致無論在垂直流體流動方向及沿著流體流動方向皆呈現均勻的分佈;但在強制對流中則在垂直流體流動方向呈現均勻的分佈,而在沿著流體流動方向則呈現不均勻的分佈,其局部紐塞數沿著流體流動方向逐漸降低。同時研究發現在局部的外界熱導分佈上亦有相同的趨勢。在自然對流中,平均紐塞數會隨著GrH上昇或Wsb / Wch 及Htb / Hch之比值下降而減少;但是在強制對流中則是隨著Rech上昇或Wsb / Wch 及Htb / Hch之比值下降而增加。根據這些相關影響參數之探討結果,本研究分別提出了平均紐塞數在自然及強制對流下的經驗公式;並且經與相同渠道內水平加熱平面之平均熱傳特性相比較,發現本研究之部分限制散熱座之平均熱傳在自然及強制對流中分別達到125% -236%與961%-4453%的熱傳增益。
    此外,本論文研究成功地發展出一個連結散熱座與多孔性材質兩模型間新的相似性法則,並且針對熱流特性建立了此兩模型間之正向與逆向轉換方法。因此,部分限制散熱座在渠道中流體流動摩擦係數與熱傳效能除了可以使用散熱座模型直接計算外,還能使用正向與逆向轉換方法透過多孔性材質模型演算出來。在多孔性材質模型中,流體流動摩擦係數可由滲透率(permeability)及慣性係數(inertial coefficient)計算得到,並且可以渠道孔隙率( )及雷諾數(Rech)為參數建立其經驗公式。在熱傳方面,相關之熱傳係數(如 hwa,hws及hsa)會顯著地受到Rech及 的影響:當Rech上昇或 下降時,hws及hsa會增加;但hwa雖會隨著Rech上昇而增加,卻不會受 影響。在多孔性材質模型中的兩種平均紐塞數(Nui及Nueff)同樣會隨著Rech上昇或 下降而增加。依據此實驗結果,本研究針對Nui及Nueff分別提出含Rech及 影響參數的經驗公式;再經由與相同渠道內水平加熱平面之平均散熱效能相比較,在本研究的實驗參數範圍內其最高的熱傳增益可達4581%。同時根據實驗數據與計算流體力學軟體的模擬結果,本研究針對熱傳性能因子(j)及熱傳性能因子對等效摩擦係數之比值(feff)分別提出含Rech及 兩參數的經驗公式;接著再以多孔性材質模型計算得來的熱傳性能因子為基礎,透過逆向轉換法將多孔性材質模型參數 轉變成散熱座模型中最適當的幾何參數(Wsb / Wch 及Htb / Hch)。另外,本研究亦藉由統計上的參數敏感度分析,而得到散熱座模型之參數GrH、Rech、Wsb / Wch 及Htb / Hch對等效摩擦係數的貢獻度分別為1.6%、49.1%、23.3%及26.0%,而對於熱傳性能因子的貢獻度則分別為2.6%、51.1%、13.4%及32.9%;多孔性材質模型之參數GrH、Rech及 對等效摩擦係數的貢獻度分別為1.5%、57.7%及40.8%,對於熱傳性能因子的貢獻度則分別為4.3%、55.1%及40.6%。
    最後,本研究利用反應曲面法分別針對散熱座模型與多孔性材質模型建立了等效摩擦係數與熱傳性能因子的經驗公式;進而成功地採用連續二次規劃法配合多起點方式有效地對此兩個模型尋找出全域熱傳最佳化的結果。依據這些方法,本研究分別採用散熱座模型與多孔性材質模型來針對部分限制散熱座在不同旁通限制條件下的最佳j 或j/feff 案例作有系統的探討。經由此兩模型一系列最佳化結果比對後,則成功地驗證了本研究所提出之相似性法則應用於多限制條件下對部分限制散熱座之j 或j/feff最佳熱傳演算之可行性與優異性。


    In the present study, a series of theoretical and experimental investigations on fluid flow and heat transfer characteristics of partially-confined heat sinks in natural and forced convections have been performed. The relevant parameters in the experiments include Grashof number (GrH), top-bypass ratio (Htb / Hch), and side-bypass ratio (Wsb / Wch) in natural convection; and Grashof number (GrH), Reynolds number (Rech), top-bypass ratio (Htb / Hch), and side-bypass ratio (Wsb / Wch) in forced convection. The parametric ranges in natural convection are GrH = 3.0X107 ~ 9.0X107, Wsb / Wch = 0.00 ~ 0.55 and Htb / Hch = 0.28 ~ 0.83; those in forced convection are GrH = 5.5X108 ~ 1.6X109, Rech = 20209 ~ 40073, Wsb / Wch = 0.00 ~ 0.55 and Htb / Hch = 0.28 ~ 0.83. Their effects on fluid flow and heat transfer characteristics have been systematically explored.
    From the aspect of fluid flow behavior, the ratio of average velocity in the heat sink region to average channel inlet velocity (Vs/Vin) is significantly affected by Rech, Wsb / Wch or Htb / Hch . The ratio of average velocity in the top-bypass or side-bypass region to average channel inlet velocity ( Vtb/Vin or Vsb/Vin ) is significantly affected by Rech, but insignificantly affected by Wsb / Wch or Htb / Hch . New correlations of Vs/Vin, Vsb/Vin and Vtb/Vin in terms of relevant influencing parameters are proposed. The effects of Rech, Wsb / Wch and Htb / Hch on pressured drop and effective friction factor (feff) are explored. New correlations for evaluating the pressure drop and the effective friction factor in terms of relevant influencing parameters are also presented.
    From the aspect of heat transfer behavior, a uniform distribution of local effective Nusselt number in natural convection is achieved either in the spanwise or in the streamwise direction due to the spreading effect of the heat conduction within the heat sink; while, the distributions of local effective Nusselt number in the spanwise and streamwise directions are uniform and non-uniform, respectively, in forced convection. The local effective Nusselt number (Nueff) in forced convection gradually decreases along the streamwise direction. A similar trend can be found for the distribution of local external thermal conductance. In natural convection, the average effective Nusselt number (Nueff) decreases with increasing GrH or decreasing Wsb / Wch and Htb / Hch ; while, it increases with increasing Rech or decreasing Wsb / Wch and Htb / Hch in forced convection. Two new correlations of Nueff in terms of relevant influencing parameters in natural and forced convections are presented, respectively. As compared with the average Nusselt number on a heating horizontal flat surface confined in a channel, the average heat transfer performances of partially-confined heat sinks in natural and forced convections can be enhanced in the range of 125% -236% and 961%-4453%, respectively.
    Furthermore, a novel parametric similarity method to effectively link the relationship between the heat sink and the porous medium models has been successfully developed. Both the direct and inverse transformations on the fluid flow friction and thermal performance with relevant influencing parameters in these two models have also been established. The fluid flow friction and thermal performance for partially-confined heat sinks can be directly evaluated in the heat sink model. With the proposed direct and inverse transformations, those can be indirectly and effectively determined in the porous medium model. The effective friction factor in the porous medium model is evaluated from the permeability and the inertial coefficient, and the correlation in terms of Rech and porosity is presented. All the heat transfer coefficients such as hwa, hws and hsa in the porous medium model are significantly affected by Rech and porosity. The hws and hsa increase with increasing Rech or decreasing porosity; hwa increases with increasing Rech, but is almost independent of porosity. Both the average Nusselt number of Nui and average effective Nusselt number of Nueff in the porous medium model increase with increasing Rech or decreasing porosity. Based on the experimental data, two new correlations of Nui and Nueff in terms of Rech and porosity are presented. The maximum heat transfer enhancement defined as can be achieved up to 4581% in the present parametric range studied. Based on both the experimental data and the CFD results, two new correlations of j and j/feff in terms of Rech and porosity in the porous medium model are reported. With the Colburn factor obtained in the porous medium model, the most suitable geometric parameters such as Wsb / Wch and Htb / Hch in the heat sink model can be effectively determined by porosity used in the porous medium model by using the proposed parametric inverse transformations. From the statistical sensitivity analysis, the contributions of GrH, Rech, Wsb / Wch and Htb / Hch on the effective friction factor in the heat sink model are 1.6%, 49.1%, 23.3%, and 26.0%, respectively; and those on the Colburn factor are 2.6%, 51.1%, 13.4%, and 32.9%, respectively. The contributions of GrH, Rech and porosity on the effective friction factor in the porous medium model are 1.5%, 57.7%, and 40.8%, respectively; and those on Colburn factor are 4.3%, 55.1%, and 40.6%, respectively.
    Finally, in either the heat sink model or the porous medium model, two empirical response formulas with a quadratic RSM model for evaluating the effective friction factor and the Colburn factor are established for each model, respectively. An effective sequential quadratic programming with a multi-start-point method has been successfully employed to automatically and efficiently seek the global thermal optimization in both the heat sink and the porous medium models. Accordingly, three cases of thermal optimization on j or j/feff in a partially-confined heat sink under different bypass ratio constraints have been explored for either the heat sink model or the porous medium model; and a series of optimal thermal evaluations on j and j/feff for partially-confined heat sinks under multi-constraints with the novel heat sink/porous medium similarity method presented in the study have been successfully performed and verified.

    第一章 緒論 第二章 實驗設備與方法 第三章 散熱座熱流特性之理論研究 第四章 多孔性散熱座熱流演算之半經驗模型 第五章 最佳化方法 第六章 散熱座熱流特性之實驗探討 第七章 以散熱座/多孔性材質相似性法則演算槽道內散熱座之效能 第八章 使用散熱座/多孔性材質相似性法則進行散熱座之最佳化究 第九章 結論與建議 參考文獻 附錄(英文版)

    [1] Viswanath, R., Wakharkar, V., Watwe, A., and Lebonheur, 2000, "Thermal Performance Challenges from Silicon to Systems," Intel Technology Journal, Q3, pp.1-16.
    [2] Sparrow, E. M. and Beckey, T. J., 1981, “Pressure Drop Characteristics for a Shrouded Longitudinal-Fin Array with Tip Clearance,” J. Heat Transfer, 103, pp.393-395.
    [3] Ellison, G. N., 1989, Thermal Computations for Electronic Equipment, 2nd Ed., Van Nostrand Reinhold Corporation, New York, USA.
    [4] Sparrow, E. M., and Grannis, V. B., 1990, “Pressure Drop Characteristics of Heat Exchangers Consisting of Arrays of Diamond-Shaped Pin Fins,” Int. J. Heat Transfer, 34(3), pp.589-600.
    [5] Linton, R. L., and Agonafer, D., 1994, “Coarse and Detailed CFD Modeling of a Finned Heat Sink,” Inter Society Conference on Thermal Phenomena, Washington, D.C., USA, May 4-7, pp.156-161.
    [6] Mills, A. F., 1999, Basic Heat and Mass Transfer, Prentice-Hall, New Jersey.
    [7] Ishizuka, M., Yokono, Y., and Hisano, K., 2000, "Experimental Study on the Performance of Compact Heat Sink for LSI Packages," Proc. Instn. Mech. Engrs., 214, Part A, pp.523-530.
    [8] Narasimhan, S., Bar-Cohen, A. and Nair, R., 2003, “Flow and Pressure Field Characteristics in the Porous Block Compact Modeling of Parallel Plate Heat Sinks,” IEEE Transactions on Components and Packaging Technologies, 26(1), pp.147-157.
    [9] Jeng, T. M., Wang, M. P., and Hung, Y. H., 2003, “ Performance Prediction for Partially-Confined Heat Sinks,” ASME Proceedings of IPACK, IPACK2003-35021, Maui, Hawaii, USA, July 6-11.
    [10] Coetzer, C. B. and Visser, J. A., 2003, “Compact Modeling of Forced Flow in Longitudinal Fin Heat Sinks with Tip Bypass,” J. Electronic Packaging, 125, pp.319-324.
    [11] Loh, C. K. and Chou, D. J., 2004, “A Modified Pressure Drop Analytical Method for Heat Sink,” 9th Inter Society Conference on Thermal Phenomena, Las Vegas, USA, June 1-4, pp.444-450.
    [12] Tasaka, M. and Tojo, H., 2004, “Cooling Performance of Heat Sinks with Micro-Fins,” 1st International Symposium on Micro & Nano Technology, Honolulu, Hawaii, USA, March 14-17.
    [13] Lei, N. and Ortega, A. 2004, “Experimental Hydraulic Characterization of Pin Fin Heat Sinks with Top and Side Bypass,” 9th Inter Society Conference on Thermal Phenomena, Las Vegas, USA, June 1-4, pp.418-428.
    [14] Wang, M. P., Wu, T. Y., Horng, J. T., and Hung, Y. H., 2005, “Fluid Flow Characteristics for Partially-Confined Compact Plain-Plate-Fin Heat Sinks,” ASME Proceedings of Heat Transfer, HT2005-72225, San Francisco, CA, USA, July 17-22.
    [15] Kadle, D. S. and Sparrow, E. M., 1986, “Numerical and Experimental Study of Turbulent Heat Transfer and Fluid Flow in Longitudinal Fin Arrays,” J. Heat Transfer, 108, pp.16-23.
    [16] Koh, J. C. Y. and Colony, R., 1986, “Heat Transfer of Microstructures for Integrated Circuits,” Int. Comm. Heat Mass Transfer, 13, pp.89-98.
    [17] Matsushima, H., Yanagida, T., and Kondo, Y., 1992, “Algorithm for Predicting the Thermal Resistance of Finned LSI Packages Mounted on a Circuit Board,” Heat Transfer Japanese Research, 21(5), pp.504-517.
    [18] Bejan, A. and Sciubba, E., 1992, “The Optimal Spacing of Parallel Plates Cooled by Forced Convection,” Int. J. Heat Mass Transfer, 35(12), pp.3259-3264.
    [19] Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., 1992, “Heat Sink Optimization with Application to Microchannels,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(5), pp.832-842.
    [20] Knight, R. W., Goodling, J. S., and Gross, B. E., 1992, “Optimal Thermal Design of Air Cooled Forced Convection Finned Heat Sinks – Experiment Verification,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(5), pp.754-760.
    [21] You, H. I., and Chang, C. H., 1997, “Numerical Prediction of Heat Transfer Coefficient for a Pin–Fin Channel Flow,” J. Heat Transfer, 119, pp840-843.
    [22] Teertstra, P., Yovanovich, M. M., Culham, J. R., and Lemczyk, T., 1999, “Analytical Forced Convective Modeling of Plate Fin Heat Sinks,” 15th IEEE SEMI-THERMTM Symposium, San Diego, CA, USA, March 9-11, pp.34-41.
    [23] Copeland, D., 2000, “Optimization of Parallel Plate Heatsinks for Forced Convection,” 16th IEEE SEMI-THERMTM Symposium, San Jose, CA, USA, March 21-23, pp.266-272.
    [24] Kim, S. J., Kim, D., and Lee, D. Y., 2000, “On the Local Thermal Equilibrium in Microchannel Heat Sinks,” J. Heat and Mass Transfer, 43, pp.1735-1748.
    [25] Kim, D., and Kim, S. J., 2004, “Compact Modeling of Fluid Flow and Heat Transfer in Straight Fin Heat Sinks,” J. Electronic Packaging, 126, pp.247-255.
    [26] Kim, D., Kim, S. J., and Ortega, A., 2004, “Compact Modeling of Fluid Flow and Heat Transfer in Pin Fin Heat Sinks,” J. Electronic Packaging, 126, pp.342-350.
    [27] Nuzychka, Y. S. and Yovanovich, M. M., 2004, “Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts,” J. Heat Transfer, 126, pp.54-61.
    [28] Sparrow, E. M., Baliga, B. R., and Patankar, S. V., 1978, "Forced Convection Heat Transfer from a Shrouded Fin Array with and without Tip Clearance," ASME J. Heat Transfer, 100, pp.572-579.
    [29] Sparrow, E. M., and Beckey, T. J., 1981, “Pressure Drop Characteristics for a Shrouded Longitudinal-Fin Array with Tip Clearance,” J. Heat Transfer, 103, pp.393-395.
    [30] Sparrow, E. M., and Kadle, D. S., 1986, “Effect of Tip-to-shroud Clearance on Turbulent Heat Transfer from a Shrouded, Longitudinal Fin Array,” J. Heat Transfer, 108, pp.519-524.
    [31] Lau, K. S. and Mahajan, R. L., 1989, “Effects of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 12(4), pp.757-756.
    [32] Wirtz, R. A., Chen, W. M., and Zhou, R. H., 1994, “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks,” J. Electronic Packaging, 116, pp.206-211.
    [33] Thombre, S. B. and Sukhatme, S. P., 1995, “Turbulent Flow Heat Transfer and Friction Factor Characteristics of Shrouded Fin Arrays with Uninterrupted Fins,” J. Experimental Thermal and Fluid Science, 10, pp.388-396.
    [34] Lee, S., 1995, “Optimum Design and Selection of Heat Sinks,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 18(4), pp.812-817.
    [35] Sata, Y., Iwasaki, H., and Ishizuka, M., 1997, “Development of Prediction Technique for Cooling Performance of Finned Heat Sink in Uniform Flow,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 20(2), pp.160-166.
    [36] Barrett, A. V. and Obinelo, I. F., 1997, “Characteristics of Longitudinal Fin Heat Sink Thermal Performance and Flow Bypass Effects through CFD Methods,” 13th IEEE SEMI-THERMTM Symposium, Cambridge, MA, USA, pp.158-165.
    [37] Behnia, M., Copeland, D., and Soodphakdee, D., 1998, “A Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow,” Inter Society Conference on Thermal Phenomena, Washington, DC, USA, May 27-30, pp.310-315.
    [38] Naik, S., Probert, S. D., and Bryden, I. G., 1999, “Heat Transfer Characteristics of Shrouded Longitudinal Ribs in Turbulent Forced Convection,” J. Heat and Fluid Flow, 20, pp.374-384.
    [39] Prstic, S., Iyengar, M., and Bar-Cohen, A., 2000, “Bypass Effect in High Performance Heat Sinks,” International Thermal Science Conference, Bled, Slovenia, June 11-14.
    [40] Jonsson, H., and Moshfegh, B., 2001, “Thermal and Hydraulic Behavior of Plate Fink and Strip Fin Heat Sinks under Varying Bypass Conditions, ” IEEE Transactions on Components and Packaging Technologies, 23(1), pp.47-54.
    [41] Jonsson, H, and Moshfegh, B., 2001, “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks—Influence of Flow Bypass,” IEEE Transactions on Components and Packaging Technologies, 24(2), pp.142-149.
    [42] El-Sayed, S. A., Mohamed, S. M., Abdel-latif, A. M, and Abouda, A. E., 2002, “Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular-fin Arras of Different Geometries and Shrouded Fin Array,” J. Experimental Thermal and Fluid Science, 26, pp.879-900.
    [43] Dogruoz, M. B., Urdaneta, M., and Ortega, A., 2005, “Experiments and modeling of the Hydraulic Resistance and Heat Transfer of In-line Square Pin Fin Heat Sinks with Top By-pass Flow,” J. of Heat and Mass Transfer, 48, pp.5058-5071.
    [44] Ortega, F. E, Ortega, A., and Xu, G., 2005, “Experiments on the Flow and Heat Transfer in Fine Pitch Parallel Plate Heat Sink with Side Inlet Side Exit Flow,” ASME Proceedings of IPACK2005, IPACK2005-73228, San Francisco, CA, USA, July 17-22.
    [45] Wu, T. Y., Wang, M. P., Horng, J. T., Chang, S. F., and Hung, Y. H., 2005, “Forced Convective Heat Transfer for Partially-Confined Compact PPF Heat Sinks with Top-Bypass Effect,” ASME Proceedings of INTERPACK, IPACK2005-73121, San Francisco, CA, July 17-22.
    [46] Yazawa, K., Yoshida, Y., and Nakagawa, S., and Ishizuka, M., 2005, “Characterization and Analysis of Low Profile Plate-Fin Heat Sinks for Advanced Thermal Packaging of Consumer Electronics,” ASME Proceedings of IMECE2005, IMECE2005-79806, Orlando, Florida, USA, Nov. 5-11.
    [47] Deans, J., Neale, J., Dempster, W., and Lee, C. K., 2006, “The Use of Effectiveness Concepts to Calculate the Thermal Resistance of Parallel Plate Heat Sinks,” J. Heat Transfer Engineering, 27(6), pp.56-67.
    [48] Chen, H. T., Chen, P. L., Wu, T. Y., Chang, S. F., and Hung, Y. H., 2006, ”Pressure Drop and Heat Transfer Characteristics for Partially-Confined Heat Sinks in Ducted Flow,” ASME International Mechanical Engineering Congress and Exposition, IMECE2006-13893, Chicago, Illinois, USA, Nov. 5-10.
    [49] Wu, M. C., Wu, T. Y., Horng, J. T., Chang, S. F., Chen, P. L., and Hung, Y. H., 2007, ”A Semi-Empirically Thermal Optimization for Heat Sink/TEC Assemblies with Various External Thermal Resistances,” International Electronic Packaging Technical Conference and Exhibition, IPACK2007-1281, Vancouver, Canada, July 8-12.
    [50] Ergun, S., 1952, “Fluid Flow through Packed Columns,” Chemical Engineering Progress, 48(2), pp.89-94.
    [51] Jones, D. P., and Krier, H., 1983, “Gas Flow Resistance Measurements through Packed Beds at High Reynolds Numbers,” J. Fluids Engineering, 105, pp.168-173.
    [52] Liu, S., Afacan, A., and Masliyah, J., 1994, “Steady Incompressible Laminar Flow in Porous Media,” Chemical Engineering Science, 49(21), pp.3565-3586.
    [53] Beavers, G. S., and Sparrow, E. M., 1969, “Non-Darcy Flow through Fibrous Porous Media,” J. Applied Mechanics, pp.711-714.
    [54] Koch, D. L., and Brady, J. F., 1986, “The Effect Diffusivity of Fibrous Media,” AIChE J., 32(4), pp.575-591.
    [55] Du Plessis, J. P., Montillet, A., Comiti, J., and Legrand, J., 1994, “Pressure Drop Prediction for Flow through High Porosity Metallic Foams,” Chemical Engineering Science, 49(21), pp.3545-3553.
    [56] Dickey, J. T., and Peterson, G. P., 1999, “Moody’s Diagram Heat Transfer Friction Flow Losses in Porous Materials,” Advances in Electronic Packaging, 1, pp.1011-1017.
    [57] Bastawros, A. F., and Evans, A. G., 1999, “Optimum Performance of Cellular Metal Heat Sinks for Thermal Management of High Power Electronics,” ASME Advances in Electronic Packaging, 1, pp.733-736.
    [58] Jeng, T. M., Wu, T. Y., Chen, B. L., Chang, S. F., and Hung, Y. H., 2005,” Flow Friction Behavior in Porous Channels,” ASME International Mechanical Engineering Congress and Exposition, IMECE2005-80168, Orlando, Florida, USA, Nov. 5-11.
    [59] Koh, J. C. Y., and Colony, R., 1974, "Analysis of Cooling Effectiveness for Porous Material in Coolant Passages," J. Heat Transfer, 96, pp.324-330.
    [60] Vortmeyer, D., 1975, “Axial Heat Dispersion in Packed Beds,” Chemical Engineering Science, 30, pp.999-1001.
    [61] Vafai, K., and Tien, C. L., 1980, “Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media,” Int. J. Heat Mass Transfer, 24, pp.195-203.
    [62] Vafai, K., and Kim, S. J., 1989, “Forced Convection in a Channel Filled with a Porous Medium: An Exact Solution,” J. Heat Transfer, 111, pp.1103-1106.
    [63] Hadim, A., 1994, “Forced Convection in a Porous Channel with Localized Heat Sources,” J. Heat Transfer, 116, pp.465-472.
    [64] Hunt, M. L., and Tien, C. L., 1988, "Non-Darcian Convection in Cylindrical Packed Beds," J. Heat Transfer, 110, pp.378-384.
    [65] Golombok, M., Jariwala, H., and Shirvill, L. C., 1990, “Gas-Solid Heat Exchange in a Fibrous Metallic Material Measured by a Heat Regenerator Technique,” J. Heat Transfer, 33(2), pp.243-252.
    [66] Younis, L. B., and Viskanta, R., 1993, “Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam,” Int. J. Heat Mass Transfer, 36(6), pp.1425-1434.
    [67] Yeh, R. H., 1997, Heat Transfer Measurement inside Porous Aluminum Material by Single-Blow Transient Technique, Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C..
    [68] Chen, P. H., and Chang, Z. C, 1997, “Measurements of Thermal Performance of Cryocooler Regenerators Using an Improved Single-Blow Method,” Int. J. Heat Mass Transfer, 40(10), pp.2341-2349.
    [69] Martin, A. R., Saltiel, C., and Shyy, W., 1998, “Heat Transfer Enhancement with Porous Inserts in Recirculating Flows,” J. Heat Transfer, 120, pp.458-467.
    [70] Angirasa, D., and Peterson, G. P., 1999, “Forced Convection Heat Transfer Augmentation in a Channel 2ith A Localized Heat Source Using Fibrous Materials,” J. Electronic Packaging, 121, pp.1-7.
    [71] Ichimiya, K., 1999, ”A New Method for Evaluation of Heat Transfer Between Solid Material and Fluid in a Porous Medium,” J. Heat Transfer, 121, pp.978-983.
    [72] Calmidi, V. V., and Mahajan, R. L., 2000, “Forced Convection in High Porosity Metal Foams,” ASME J. Heat Transfer, 122, pp.557-565.
    [73] Kim, S. J., and Jang, S. P., 2002, “Effects of Darcy Number, Prandtl Number, and the Reynolds number on Local Thermal Non-equilibrium,” J. Heat and Mass Transfer, 45, pp.3885-3896.
    [74] Kim, S. J., Paek, J. W., and Kang, B. H., 2003, “Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling,” IEEE Trans. Comp. Pack. Tech., 26(1), pp.262-267.
    [75] Jeng, T. M., Wang, M. P., Hwang, G. J., and Hung, Y. H., 2004, “A New Semi-Empirical Model for Predicting Heat Transfer Characteristics in Porous Channels,” Experimental Thermal and Fluid Science, 29(1), Dec., pp.9-21.
    [76] Jeng, T. M., Liu, L. K., and Hung, Y. H., 2005, “A Novel Semi-Empirical Model for Evaluating Thermal Performance of Porous Metallic Foam Heat Sinks,” ASME J. Electronic Packaging, 127, pp.223-234.
    [77] Shih, W. H., Chiu, W. C., and Hsieh, W. H., 2006, “Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks,” ASME J. Heat Transfer, 128, pp.530-537.
    [78] Vanderplaats, G. N., 1993, Numerical Optimization Techniques for Engineering Design, McGraw-Hill, Singapore.
    [79] Wu, C. F., and Hamada, M., 2000, Experiments – Planning, Analysis, and Parameter Design Optimization, John Wiley & Sons, New York, USA.
    [80] Belegundu, A. D., and Chandrupatla, T. R., 1999, Optimization Concepts and Applications in Engineering, Prentice Hall, New Jersey.
    [81] Constans, E. W., Belegundu, A. D., and Kulkarni, A. K., 1994, “Optimization of a Pin-Fin Sink: A Design Tool,” 1994 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, Nov. 6-11, EEP-9, pp.25-32.
    [82] Azer, K., and Mandrone, C. D., 1994, “Effect of Pin Fin Density of the Thermal Performance of Unshrouded Pin Fin Heat Sinks,” J. Electronic Packaging, 116, pp.306-309.
    [83] Shaukatullah, H., Storr, W. R., Hansen, B. J., and Gaynes, M. A., 1996, “Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications,” 12th IEEE SEMI-THERM Symposium, Austin, TX, USA, March 5-7, pp.151-163.
    [84] Box, G. E. P., and Wilson, K. B., 1951, “On the Experimental Attainment of Optimum Conditions,” J. Royal Statistics Society, Series B, No.13, pp.1-45.
    [85] Box, G. E. P., and Behnken, D. W., 1960, “Some New Three Level Designs for the Study of Quantitative Variables,” Technometrics, 2, pp.455-475.
    [86] Box, G. E. P., and Draper, N. R., 1987, Empirical Model-Building and Response Surfaces, John Wiley & Sons, New York, USA.
    [87] Montgomery, D. C., 2001, Design and Analysis of Experiments, 5th Ed., John Wiley & Sons, New York, USA.
    [88] Myers, G. N., and Montgomery, D. C., 2002, Response Surface Methodology, 2nd Ed,, John Wiley & Sons, New York, USA.
    [89] Khuri, Andre I., Cornell, John A., 1996, Response surfaces: designs and analyses, 2nd edition, Marcel Dekker.
    [90] Knight, R. W., and Gooding, J. S., 1991, “Optimal Thermal Design of Forced Convection Heat Sinks-analytical,” J. Electronic Packaging., 113, pp.313-321.
    [91] Kraus, A. D., and Bar-Cohen, A., 1995, Design and Analysis of Heat Sinks, John Wiley and Sons, Inc., New York, USA.
    [92] Chen, H. T., Horng, J. T., Chen, P. L., and Hung, Y. H., 2004, “Optimal design for PPF heat sinks in electronics cooling applications,” J. Electronic Packaging, 126, pp.410-422.
    [93] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, “Learning Representation by Backpropagation Error, ” Nature, 323, pp.533-536.
    [94] Chen, S., Billings, S. A., and Grant, P. M., 1990, “Non-linear System Identification Using Neural Network,” Int. J. Control, 1, pp.1191-1214.
    [95] Ilonen, J., Kamarainen, J. K., and Lampinen, J., 2003, “Differential Evolution Training Algorithm for Feed-forward Neural Networks,” Neural Processing Letters, 17, pp.93-105.
    [96] Ilumoka, A.A., 1997, “Optimal Transistor Sizing for CMOS VLSI Circuits Using Modular Artificial Neural Networks,” Proceedings of the 29th Southeastern Symposium on System Theory, Cookeville, Tennessee, USA, March 9-11, pp.310-340.
    [97] Idir, K., L., and Chang, Dai, H., 1998, “Improved Neural Network Model for Induction Motor Design,” IEEE Trans. Magn., 34, pp.2948–2951.
    [98] Han, S.Y., and Maeng, J. S., 2003, “Shape Optimization of Cut-off in a Multi-blade Fan/Scroll System Using Neural Network,” Int. J. Heat Mass Transfer, 46, pp.2833–2839.
    [99] Hadim, H., and Suwa, T., 2005, “A Multidisciplinary Design and Optimization Methodology for Ball Grid Array Packages Using Artificial Neural Networks,” J. Electronic Packaging, 127, pp.306-313.
    [100] Jambunathan, K., Hartle, S.L., Ashforth-Frost, S., and Fontama, V.N., 1996, “Evaluating Convective Heat Transfer Coefficients Using Neural Networks,” Int. J. Heat Mass Transfer, 39, pp.2329-2332.
    [101] Pacheco-Vega, A., Diaz, G., Sen, M., Yang, K.T., and McClain, R.L., 2001, “Heat Rate Predictions in Humid Air-Water Heat Exchangers Using Correlations and Neural Networks,” J. Heat Transfer, 123, pp.348-354.
    [102] Goldberg, D.E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.
    [103] Holland, J. H., 1992, “Genetic Algorithms,” Sci. Am., pp.44-50.
    [104] Krishnakumar, K., and Goldberg, D.E., 1992, “Control System Optimization Using Genetic Algorithms,” J. Guidance Control Synamics, 15, pp.735-740.
    [105] Chen H. T., Horng, J. T., Chen, P. L., and Hung, Y. H., 2004, “Optimal Design for PPF Heat Sinks in Electronics Cooling Applications,” J. Electronic Packaging, 126, pp.410-422.
    [106] Chen, H. T., Chen, P. L., Horng, J. T., and Hung, Y. H., 2005, “Design Optimization for Pin-Fin Heat Sinks,” J. Electronic Packaging, 127, pp.397-406.
    [107] Wang, M. P., Chen, H. T., Horng, J. T., Wu, T. Y., Chen, P. L., and Hung, Y. H., 2005, “Thermal Optimal Design for Partially-Confined Compact Heat Sinks,” Proceedings of IPACK2005, IPACK2005-73118, San Francisco, USA, July 17-22.
    [108] Wu, M. C., Peng, C. H., Lee, C. Y., Fang, C. J., and Hung, Y. H., 2005, “Optimal Design for Thermal Performance of a Heat Sink Integrated with Thermoelectric Cooler,” Proceedings of HT2005, HT2005-72234, San Francisco, USA, July 17-22.
    [109] Chen, H. T., Chen, P. L., Horng, J. T., Chang, S. F., and Hung, Y. H., 2006, “Thermal Design Optimization for Strip-Fin Heat Sinks with a Ducted Air Flow,” Inter Society Conference on Thermal Phenomena,, San Diego, CA, USA, May 30-June 2.
    [110] Fang, C.J., 2006, Thermal Optimization for Confined Stationary or Rotating MCM Disk with Round Air Jet Array Impingement, Doctor’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
    [111] Lee, C. Y., Wu, M. C., Peng, C. H., Fang, C. J., and Hung, Y. H., 2006 “Optimal Approach with Genetic Algorithm for Thermal Performance of Heat Sink/TEC Assembly,” Inter Society Conference on Thermal Phenomena,, San Diego, CA, USA, May 30-June 2.
    [112] Chen, P. L., 2007, Thermal Optimal Design for Compact Cold Plates in Electronics Cooling Applications, Doctor’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
    [113] Horng, J. T., Chang, S. F., Wu, T. Y., Chen, P. L., and Hung,, Y. H., 2008, “Thermal Optimal Design for Parallel Plain-Fin Heat Sinks by Using Neuro-Genetic Method,” IEEE Transactions on Components and Packaging Technologies, February (In Press).
    [114] Kline, S. J., and McClintock, F. A., 1953, “Describing the Uncertainties in Single Sample Experiments,” Mechanical Engineering, 75, pp.3-8
    [115] Moffat, R. J., 1988, “Describing the Uncertainties in Experimental Results,” Exp. Thermal Fluid Sci., 1, pp.3-17.
    [116] LaHaye, P. G., Neugebauer, F. J., and Sakhuja, R. K., 1974, “A Generalized Prediction of Heat Transfer Surfaces,” J. Heat Transfer, 96, pp.511-517.
    [117] Gooding, J. S., Jaeger, R. C., Mackowski, D. W., Fahrner, C. J., and Hingorani, S., 1994, "Optimal Sizing of Planar Thermal Spreaders," J. Heat Transfer, 116, pp.296-301.
    [118] Kays, W. M., and London, A. L., 1984, Compact Heat Exchangers, 3rd Edition., McGraw-Hill, New York, USA.
    [119] Wu, Y. C., Chen, H. T., Lin, C. C., and Hung, Y. H.*, 2003, “Thermal Analysis for Three-Dimensional Heat Spreader Integrated with Heat Sink,” Proceedings of InterPACK’03, InterPack2003-35018, Maui, Hawaii, USA, July 6-11.
    [120] Younis, L. B., and Viskanta, R., 1993, “Experimental Determination of the Volumetric Heat Transfer Coefficient between Stream of Air and Ceramic Foam,” Int. J. Heat Mass Transfer, 36(6), pp.1425-1434.
    [121] Lee, S. L., 1989a, “Weighting Function Scheme and Its Application on Multidimensional Conservation Equations,” Int. J. Heat Mass Transfer, 32(11), pp.2065-2073.
    [122] Lee, S. L., 1989b, “A Strong Implicit Solver for Two-Dimensional Elliptic Differential Equations,” Numerical Heat Transfer, Part B, 16, pp.161-178.
    [123] Wang, M. P., 2004, Heat Transfer and Fluid Flow Characteristics for Confined Compact Heat Sinks, Doctor’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
    [124] Mills, A. F., 1962, “Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of a Circular Conduit,” J. Mech. Eng. Sci., 4, pp.63-71.
    [125] Kau, S. T., Wang, M. P., Wu, M. C., and Hung, Y. H., 2003, “Thermal Performance Measurement for Confined Heat Sinks by Using a Modified Transient Liquid Crystal Technique,” Proceeding of ASME IPACK2003, IPACK2003-35025, Maui, Hawaii, USA, July 6-11.
    [126] Design-Expert, V.6.0.10, State-Ease, Inc., Minneapoils, MN, USA.
    [127] Schlichting, Hermann, 1979, Boundary Layer Theory, McGraw-Hill Book Compary, New Yor, USA, pp.598-600.
    [128] Yovanovich, M. M., Muzychka, Y. S. and Culham, J. R., 1999, “Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Cannels,” J. Thermophysics and Heat Transfer, 13, pp.495-500.
    [129] Kays, W. M., and Crawford, M.E., 1993, Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill, New York, USA.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE