簡易檢索 / 詳目顯示

研究生: 賴冠廷
Lai, Guan-Ting
論文名稱: 應用穿透率極值光彈理論於玻璃平板應力之量測
Stress Measurement of Glass Plates by Transmissivity Extremities Theory of Photoelasticity
指導教授: 王偉中
Wang, Wei-Cheng
口試委員: 羅鵬飛
葉銘泉
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 132
中文關鍵詞: 薄膜電晶體液晶顯示器玻璃基板雙折射特性光彈法光譜儀相位移法應力光學係數穿透率極值光彈理論
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著顯示器產業技術的進步,目前平面顯示器中以薄膜電晶體液晶顯示器(Thin Film Transistor-Liquid Crystal Display, TFT-LCD)為最大主流。隨著玻璃基板的輕薄化,玻璃材料的雙折射特性亦降低,使用傳統光彈法將不易量測玻璃內的應力值。本研究延續以往以光彈法結合光譜儀對光彈材料PSM-1所做的研究,利用光譜儀的高解析度及高靈敏度,嘗試對普通玻璃試片受力產生的條紋級次進行分析。除了使用拉伸試片,更使用圓盤試片,並找尋適當的量測位置,解決拉伸試片無法取得足夠條紋資訊的問題。另以白光為光源,並利用三步相位移光彈法計算出可見光波段在不同應力下之應力光學係數。
    本研究亦利用白光光源搭配光譜儀提供準確的波長間穿透率資訊,進行穿透率對應應力與波長三維圖擬合,首次提出一個新的穿透率極值光彈理論(Transmissivity Extremities Theory of Photoelasticity, TETP),以建立可見光波段的應力判斷公式。透過對玻璃試片隨機施加載,並將計算應力值與實際應力值做比較,以探討所建立之應力判斷公式的準確性。最後,對厚度更薄的玻璃試片進行實驗,確立以穿透率極值光彈理論所建立應力判斷公式的可行性。


    一、簡介 1 二、文獻回顧 3 三、實驗原理 9 3.1 傳統光彈理論 9 3.2 相位移光彈理論 13 3.3 彩色光彈條紋之形成與判讀[31] 15 3.4 穿透率正規化處理及穿透率極值光彈理論 17 四、實驗試片與裝置 21 4.1 實驗試片規劃 21 4.1.1單軸向拉伸試驗 21 4.1.2玻璃圓盤單軸向壓縮試驗 21 4.2 實驗裝置 22 五、實驗程序 27 5.1應力光學係數量測實驗 27 5.1.1 ASTM標準試片拉伸試驗 27 5.1.2玻璃圓盤試片徑向受壓力試驗 28 5.1.2.1利用圓盤受徑向應力之理論解尋找玻璃圓盤試片之量測位置 28 5.1.2.2量測玻璃圓盤試片前的校正方式 30 5.1.2.3玻璃圓盤試片施載方式 31 5.2 三步相位移法步驟 31 5.3 玻璃圓盤試片穿透率實驗 33 六、結果與討論 35 6.1 ASTM標準試片拉伸結果 35 6.2玻璃圓盤試片徑向受壓力試驗 38 6.2.1玻璃圓盤試片量測位置實驗 38 6.2.2圓盤玻璃試片之應力光學係數量測 39 6.3圓盤玻璃試片穿透率實驗 41 6.3.1利用穿透率波峰及波谷位移量推算試片之應力變化 41 6.3.2穿透率極值光彈理論[43] 46 6.3.3利用穿透率極值光彈理論量測玻璃應力 47 6.3.3.1厚度7.7 mm之玻璃試片受徑向壓力實驗 50 6.3.3.2厚度7.7 mm之玻璃試片受較低間距之徑向壓力實驗 54 6.3.3.3厚度4.7 mm之玻璃試片受徑向壓力實驗 55 6.4實驗結果與討論 57 七、結論與未來展望 59 7.1結論 59 7.2未來展望 61 八、參考文獻 63

    [1] Website : www.auo.com
    [2] G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, “Analysis of Thermo-Physical and Optical Properties of a Diffuser Using PET/PC/PBT Copolymer in LCD Backlight Units,” Display, Vol. 26, pp. 37-43, 2005.
    [3] G. H. Kim, “A PMMA Composite as an Optical Diffuser in a Liquid Crystal Display Backlighting Unit (BLU) ,” European Polymer Journal, Vol. 41, pp. 1729-1737, 2005.
    [4] A. Asundi, “Phase Shifting in Photoelasticity,” Experimental Techniques, Vol. 17, pp. 19-23, 1993.
    [5] A. Ajovalasit, S. Barone, and G. Petrucci, “Towards RGB Photoelasticity: Full-field Automated Photoelasticity in White Light,” Experimental Mechanics, Vol. 35, pp. 193-200, 1995.
    [6] A. S. Voloshin and A. S. Redner, “Automated Measurement of Birefringence: Development and Experimental Evaluation of the Techniques,” Experimental Mechanics, Vol. 29, pp. 252-257, 1982.
    [7] A. S. Redner, “Photoelastic Measurements of Residual Stress for NDE,” Proceedings of SPIE, Vol. 814, Photomechanics and Speckle Metrology, pp. 16-19, San Diego, CA, U.S.A., 1984.
    [8] A. S. Redner, “Photoelastie Measurements by Means of Computer Assisted Spectral Contents Analysis,” Experimental Mechanics, Vol. 25, pp. 148-153, 1985.
    [9] R. J. Sanford and V. Lyengar, “The Measurement of the Complete Photoelastic Fringe Order Using a Spectral Scanner,” Proceedings of SEM Spring Conference on Experimental Mechanics, pp. 160-168, Las Vegas, U.S.A., 1985.
    [10] R. J. Sanford, “On the Range of Accuracy of Spectra by Scanned White Light Photoelasticity,” Proceedings of SEM Conference on Experimental Mechanics, pp. 901-908, New Orleans, U.S.A., 1986.
    [11] H. Marwitz, W. Kizler, and X. Schuster, “Improved Efficiency in Photoelastic Coatings. Fast Detection of Fringe Order Using Computer Controlled Spectrometry,” Proceedings of 9th International Conference on Experimental Mechanics, Vol. 2, pp. 828-838, Copenhagen, Denmark, 1990.
    [12] L. Ivanova and G. Nechev, “A Method for Investigation of the Residual Stress in Glasses with Spectral Polariscope,” Proceedings of 9th International Conference on Experimental Mechanics, Vol. 2, pp. 876-883, Copenhagen, Denmark, 1990.
    [13] S. J. Haake and E. A. Patterson, “Photoelastic Analysis of Frozen Stressed Specimens Using Spectral-content Analysis,” Experimental Mechanics, Vol. 32, pp. 266-272, 1992.
    [14] P. L. Mason, “Method and Apparatus for Measuring Retardation and Birefringence,” United States Patent, Patent No : US 5,825,492 A, Oct. 20, 1998.
    [15] B. L. Wang, C. O. Theodore, and P. Kadlec, “Industrial Applications of a High-Sensitivity Linear Birefringence Measurement System,” Proceedings of SPIE, Vol. 3754, pp. 197-203, Monterey, CA, U. S. A., 1999.
    [16] B. L. Wang, T. C. Oakberg, and P. Kadlec, “Birefreingence Measurement,” United States Patent, Patent No : US 6,697,157 B2, Feb. 24, 2004.
    [17] Website : www.hindsinstruments.com
    [18] S. Yoneyama, Y. Morimoto, and R. Matsui, “Photoelastic Fringe Pattern Analysis by Real-Time Phase-Shifting Method,” Optics and Lasers in Engineering, Vol. 39, pp.1-13, 2003.
    [19] T. Wakayama, H. Kowa, Y. Otani, N. Umeda, and T. Yoshizawa, “Birefringence Dispersion Measurement by Geometric Phase,” Proceeding of SPIE, Vol.4902, pp. 406-411, 2002.
    [20] T. Wakayama, Y. Otani, and N. Umeda, “Birefringence Dispersion Measurement Based on Achromatic Four Points of Geometric Phase,” Optical Engineering, vol. 45, pp. 083603-1-5, 2006.
    [21] J. M. Cohen, R. G. Greene, D. S. Strope, and A. Kaplan, “Impact of Birefringence on Large LCDs,” SID Symposium Digest of Technical Papers, Vol. 33, pp. 329-331, 2002.
    [22] C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Measurement of Internal Stress in Glass Articles,” Journal of the American Ceramic Society, Vol.86, pp. 1353-1359, 2003.
    [23] H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, and S. Zhao, “Simplified System Based on Photoelastic Modulation Technique for Low-Level Birefringence Measurement,” Review of Scientific Instruments, Vol. 74, pp. 4745-4749, 2003.
    [24] A. Ajovalasit, G. Petrucci, and M. Scafidi, “Phase Shifting Photoelasticity in White Light,” Optics and Lasers in Engineering, Vol. 45, Issue 5, pp.596-611, 2007.
    [25] K. Gomi, T. Suzuki, Y. Niitsu, and K. Ichinose, “New Simplified Measuring Method for Distributed Low-Level Birefringence,” Proceedings of SPIE, Vol. 7155, pp. 715510-715511, 2008.
    [26] Y. Wei, J. Hongwei, W. Shibin, and C. Xuedong, “Research on the Measurement of Large Glass Stress Distribution,” Proceedings of SPIE, Vol. 7283, pp. 72830X-1, 2009.
    [27] A. Ajovalasit, G. Petrucci, and M. Scafidi, “Measurement of edge residual stresses in glass by the phase-shifting method,” Optics and Lasers in Engineering, Vol. 49, Issue 5, pp.652-657, 2011.
    [28] 陳維仁, “光彈法結合光譜儀之應力分析”, 國立清華大學動力機械工程學系碩士論文, 2009.
    [29] 曾郁程, “以光彈法結合光譜儀建立應力判斷公式”, 國立清華大學動力機械工程學系碩士論文, 2010.
    [30] K. Ramesh, “Digital Photoelasticity : Advanced Techniques and Applications,” Springer-Verlag., pp. 144-146, Berlin, Germany, 2000.
    [31] 趙清澄主編, “光測力學教程”, 第23頁, 高等教育出版社, 北京, 民國84年.
    [32] ASTM Test Designation B557M, “Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric),” Annual Book of ASTM Standards, Vol. 02.02, pp. 578-594, Philadelphia, 1984.
    [33] Website : www.ray-tech.com.tw
    [34] Website : www.taiwanglass.com.tw
    [35] Website : www.itrc.org.tw
    [36] Website : www.sharplesstress.com
    [37] Website : www.hmtech.com.tw
    [38] Website : www.mathworks.com/products/matlab
    [39] 吳政邦, “含一近表面裂縫半無窮平板之應力分析”, 國立清華大學動力機械工程學系碩士論文, 2005.
    [40] Website : www.techniquip.com
    [41] M. M. Frocht, “Photoelasticity,” vol.2, New York, Wiley, 1984, Ch.4.
    [42] ASTM Test Designation C97-04, “Standard Test Method for Photoelastic Determination of Residual Stress in a Transparent Glass Matrix Using a Polarizing Microscope and Optical Retardation Compensation Procedures,” Annual Book of ASTM Standards, Vol. 15.02, pp. 1-9, Philadelphia, 2009.
    [43] 此部份與本實驗室宋泊錡共同討論所得.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE