研究生: |
劉宗和 Liu, Tsung-Ho |
---|---|
論文名稱: |
研究果蠅行為的即時影像分析與雷射刺激之系統研發 Camera-Based Real-Time Analysis with laser stimulated System for Behavioral Study of Drosophila |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 果蠅 、即時影像分析 |
外文關鍵詞: | Drosophila, real-time image analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去使用影像處理分析果蠅行為的研究都是實驗後做分析,先用攝影機錄製影像,再由軟體分析果蠅的行為,因此在實驗過程中無法給予果蠅額外的刺激源。本論文提出發展一種即時的果蠅行為觀測平台,能在進行實驗時快速的分析影像得到果蠅的位置,並提供雷射光做為額外的刺激源來改變果蠅之行為。
本論文主要分為兩個主題,一、利用影像處理分析得到果蠅的位置、距離與方向的資訊,將果蠅的位置信號轉換成兩軸馬達所接收的電壓信號,藉由控制馬達使連結馬達的鏡組反射雷射光擊中指定之果蠅。。二、透過設計的實驗驗證本平台即時影像分析及雷射光對果蠅之影響,並藉此研究果蠅的學習與記憶行為。這個即時影像處理搭配雷射追跡之平台將改善現在僅能使用被動的事後分析、觀察果蠅的行為,進而達到提供主動的給予特定果蠅外加刺激而獲取額外行為差異的實驗,增加實驗設計的多樣性。未來可搭配清華大學腦科學研究中心團隊在果蠅基因工程方面的技術,分析果蠅大腦神經網路上下游的連結。
Image processing and analysis used in the past behavior of fruit flies, Drosophila melanogaster, are off-line work. It needs two steps, first recorded images by a camera and then analyzed by software. In this way, it cannot apply any external stimulus during experiment. This paper proposes the development of a real-time processing system for Drosophila behavior study, enhancing experiments to rapid analysis of images, tracking the location of fruit fly and providing additional stimuli to change its behavior.
Thesis is divided into two parts. First, design and develop the system for fruit fly image analysis. It can get the real-time location, distance and direction information. After analysis, it can rotate two-axis motor to a specific position by sending signals via a digital to analog card. Mirrors on the motor reflected the laser light hit the choosing fly. Second, verify the real-time image analysis and laser light effects to the fly by experiments. This real-time image processing with a laser tracking system will promote the passive observation of fruit flies to active stimulation on specific fruit fly. This system can help experts get additional differences in behavior experiments and increase the experimental design diversity. In the future, it can be used with the gene engineering technology in Brain Research Center of National Tsing Hua University to find the brain network linking from upstream to downstream in fruit flies.
[1]. Wolf, F.W. & Heberlein, U. Invertebrate models of drug abuse. J. Neurobiol. 54,
161–178 (2003).
[2]. Guarnieri, D.J. & Heberlein, U. Drosophila melanogaster, a genetic model system
for alcohol research. Int. Rev. Neurobiol. 54, 199–228 (2003).
[3]. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B.J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).
[4]. Hoyer, S.C. et al. Octopamine in male aggression of Drosophila. Curr. Biol. 18,
159–167 (2008).
[5]. Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is
regulated by adult mushroom bodies. Nature 441: 757–760.
[6]. Ganguly-Fitzgerald I, Donlea J, Shaw PJ (2006) Waking experience affects sleep
need in Drosophila. Science 313: 1775–1781.
[7]. Pitman JL, McGill JJ, Keegan KP, Allada R (2006) A dynamic role for the
mushroom bodies in promoting sleep in Drosophila. Nature 441: 753–756.
[8]. Shaw, P., Ocorr, K., Bodmer, R. & Oldham, S. Drosophila aging 2006/2007. Exp.
Gerontol. 43, 5–10 (2008).
[9]. McGuire SE, Deshazer M, Davis RL (2005) Thirty years of olfactory learning
and memory research in Drosophila melanogaster. Progress in Neurobiology 76:
328–347.
[10]. Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila.
Current Biology 15: R700–R713.
[11]. Zhang, F. et al. Circuit-breakers: optical technologies for probing neural signals
and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).
[12]. Callaway, E.M. A molecular and genetic arsenal for systems neuroscience. Trends eurosci. 28, 196–201 (2005).
[13]. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 7, 634–660 (2008).
[14]. Zhou, C., Rao, Y. & Rao, Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 11, 1059–1067 (2008).
[15]. Martin, JR., 2003. Locomotor activity: a complex behavioral trait to unravel. Behav. Process. 64, 145-160.
[16]. Martin, J.R. A portrait of locomotor behavior in Drosophila determined by a video-tracking paradigm. Behav. Processes 67, 207-219(2004)
[17]. Valente, D., Golani, I. & Mitra, P.P. Analysis of the trajectory of Drosophila melanogaster in a circular open field arena. PLoS ONE 2, e1083(2007).
[18]. Ramazani, R.B., Krishnan.H.R., Nergeson, S.E. & Atkinson, N.S. Computer automated movement detection for the analysis of behavior.J. Neurosci. Methods 162, 171-179(2007).
[19]. Dankert, H., Wang,, L., Hoopfer, E.D., Anderson, D.J. & Perona, P. Automated monitoring and analysis of social behavior in Drosophila. Nat. Methods 6,297-303(2009).
[20]. Branson, K., Robie, A.A., Bender, J., Perona, P. & Dickinson,M.H. High-throughput ethomics in Large groups of Drosophila. Nat. Methods 6, 451 - 457 (2009)
[21]. Heisenberg, M., & Brembs, B. Conditioning With Compound Stimuli in Drosophila Melanogaster in the Flight Simulator. J Exp Biol.204 2849-2859( 2001).
[22] 吳建德,”研究果蠅行為的即時影像與雷射追跡系統之研發”,清華大學動力機械工程學系研究所碩士論文,2009年。
[23]. Richard W. Siegel & Jeffrey C. Hall. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl. 3430-3434(1979).