簡易檢索 / 詳目顯示

研究生: 徐偉鈞
Hsu, Wei-Chun
論文名稱: 以氧化鋁/氧化鎵(氧化釓)/砷化銦鎵分子束磊晶異質結構之電容-電壓特性探討有效金屬功函數值
Investigation of effective metal work function values on MBE-grown Al2O3/Ga2O3(Gd2O3)/In0.2Ga0.8As hetero-structure from electrical capacitance-voltage characteristics
指導教授: 洪銘輝
Hong, Ming-hwei
郭瑞年
Kwo, Ray Nien
口試委員: 洪銘輝
Hong, Ming-hwei
郭瑞年
Kwo, Ray Nien
郭治群
Guo, Jyh-Chyurn
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 64
中文關鍵詞: 有效金屬功函數值功函數分子束磊晶電容-電壓特性砷化銦鎵氧化鋁氧化釓氧化鎵釘扎能力
外文關鍵詞: effective metal work function values, work function, MBE, capacitance-voltage, In0.2Ga0.8As, Al2O3, Ga2O3(Gd2O3), GGO, pinning strength
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • High-k/metal gates on alternative channel materials, such as InGaAs with inherently higher electron mobility than silicon, are significant for complementary metal-oxide-semiconductor (CMOS) devices beyond the 15nm-node technology. Achieving Fermi level unpinning in both interfaces of high-k dielectric/metal gate and high-k dielectric/InGaAs is a must to realize the advanced CMOS devices. Previously, well-behaved capacitance-voltage (C-V) characteristics of both Al2O3/ Ga2O3 (Gd2O3) [GGO]/n- and p-In0.2Ga0.8As MOS capacitors (MOSCAPs) have been demonstrated with a low interfacial density of states (Dit). In addition, using metal gates of various work function values, small differences between theoretical and measured flat-band voltages (Vfb) were observed, suggesting a high degree of Fermi-level movement efficiency at the metal/Al2O3 and the GGO/n- and p-In0.2Ga0.8As interfaces.
    In this work, the effective work function values of various metal gates, which include Al, Ti, Ni, Au, Pt, and TiN, have been extracted from the corresponding capacitance-voltage characteristics on the structure of Al2O3/GGO/InGaAs. The pinning strength value (S) of metal/oxide interface was then derived to be 0.99±0.11, which reveals the nearly unpinned Fermi level at the metal/oxide interface. Combining the unpinned metal/oxide and GGO/InGaAs interface, the metal /Al2O3/GGO/InGaAs hetero-structure can be readily employed in advanced InGaAs MOSFETs.


    Abstract I Acknowledgment II Table of Contents III Table of Captions VI Figure of Captions VIII Chapter1 Introduction 1 1.1Background 1 1.2Alternative High □ Gate Dielectrics and Metal Gate 2 1.3Alternative High Mobility Substrate 3 1.4Motivation 5 Chapter2 Instrumentation and theories 10 2.1 Ultra-high Multi-Chamber Vacuum System 10 2.1.1 Molecular Beam Epitaxy System 10 2.1.2 Refection High Energy Electron Diffraction (RHEED) 11 2.1.3 Residual Gas Analyzer (RGA) 12 2.2 Metallization Instrumentation and Selection Criteria of Metal 13 2.2.1 Electron-Beam and Thermal Evaporation Systems 14 2.2.2 Sputtering system 14 2.3 Annealing Instrumentation 17 2.4 High Resolution Transmission Electron Microscope (HRTEM) 17 2.5 Electrical measurement Instrumentation 18 2.6 Principle Physics of Metal-Oxide-Semiconductor (MOS) structure 19 2.6.1 Ideal MOS Capacitor 19 2.6.2 Non-ideal MOS Capacitor 20 2.6.3 Types of Oxide Charge 21 2.6.4 Interfacial Density of state (Dit) 22 2.6.5 Extraction of Electrical Parameters from C-V curve 23 2.6.5.1 Equivalent Oxide Thickness 24 2.6.5.2 Substrate Impurity Concentration (Nsub) 25 2.6.5.3 Flat Band Voltage (Vfb) 25 2.6.5.4 Oxide Charges Estimation 27 Chapter3 Experiment 31 3.1 Experimental Goal 31 3.2 Experiment Procedure 32 3.2.1 Film deposited in UHV multi-chamber system 32 3.2.1.1 Substrate Preparation 32 3.2.1.2 III-V layers Epitaxy 33 3.2.1.3 Oxide layers deposition 33 3.2.2 Heat treatment 34 3.2.3 Metal deposition 35 3.2.4 Electrical Properties Measurement 35 3.2.5 Experimental data fitting for calculating oxide traps 36 3.2.6 Extraction of metal effective work function values 37 Chapter4 Calculation of Effective Work Function Value 40 4.1 Details and Assumptions 40 4.1.1 Curve Fitting for Oxide Trapped Charge 40 4.1.2 Intrinsic Carrier Concentration and Substrate Work Function Values 41 4.1.3 Effective Work Function Values from Various Conditions 44 Chapter5 Results and Discussion 50 5.1 Results and Discussion 50 5.1.1 The Effective Oxide Trapped Charge 50 5.1.2 The Effective Work Function Values 52 5.1.3 The Pinning Strength Values 54 Chapter6 Conclusion 61 Appendix 62 Reference 63

    [1] G.E Moore Electronics, 39, 114-117, (1965)
    [2] J. Robertson, Rep. Prog. Phys. 69, 327–396 (2006)
    [3] Intel’s 45nm CMOS Technology (2008)
    [4] Yee-Chia Yeo, J. Appl. Phys. 92, 12 (2002)
    [5] V. Misra, ch.14, in: H.R Huff et. al. (ed.), High K Dialectic Constant Material, Springer (2005)
    [6] Wolfgang Braun, Applied RHEED, Springer (1999)
    [7] Milton Ohring, Materials Science of Thin Film, Acadamic Press (2002)
    [8] Chang-Hoon Choi et al., IEEE ELECTRON DEVICE LETTERS, 23, 4 (2002)
    [9] C. Hobbs et al., Symposium on VLSI Technology Digest, 9-10, (2003)
    [10] V. Misra, MRS Bulletin,27, 3, 212-216 (2007)
    [11] Baohong Cheng et al., IEEE ELECTRON DEVICE LETTERS, 46, 7 (1999)
    [12] S. Berg et al., chapter4 in: R. Hull et. al. (ed.), Reactive Sputter Deposition, Springer (2008)
    [13] K. H. Shiu, NTHU Master thesis, (2008)
    [14] Dieter K. Schroder, Semiconductor Material and Device Characterization, John Wiley. (2006)
    [15] C. A. Lin et al., Appl. Phys. Lett, 98, 062108 (2011)
    [16] NSM Archive http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
    [17] K. H. Shiu et al., Appl. Phys. Lett, 92, 172904 (2008)
    [18] Y. D. Wu et al., J. Vac. Sci. Technol. B, Vol. 28, No. 3 (2010)
    [19] D. Liu, Microelectronic Engineering, 86, 1668–1671 (2009)
    [20] S. M. Sze and Kwok. K. Ng, Physics of Semiconductor Devices, John Wiley and Sons (2007)
    [21] Michaelson H B, J. Appl. Phys. 48 4729 (1977)
    [22] J. Westlinder et al., IEEE Electron Device Lett., vol. 24, pp. 550–552, Sept. (2003)
    [23] Yeo et al., J. Appl. Phys. 92, 12 (2002)
    [24] Mahji P. et al, Sematech Workshop, (Austin, TX, September 2005)
    [25] K. Y. Tse et al., Phys. Rev. B 81, 035325 (2010)
    [26] J. Goniakowski et al., Interface Sci. 12, 93-103 (2004)
    [28] K. Y. Tse et al., PRL 99, 086805 (2007)
    [29] Y. Akasaka et al., Jpn. J. Appl. Phys. 45, 1289 (2006)
    [30] J. Robertson et al., Appl. Phys. Lett, 91, 132912 (2007)
    [31] Jurgen Klein, PhD Thesis, University of Cologne (2001)
    [32] C. W. Wilmsen, J. Vac. Sci. Technol., 19, 279-289, (1981)
    [33] C. W. Wilmsen, New York: Plenum, 435 (1985)
    [34] K. Navratil et al., Thin Solid Films, 56, 163-171, (1979)
    [35] E. I. Chen et. al., Appl. Phys. Lett, 66, 2688-2690, (1995)
    [36] Goldberg Yu.A. et al., Handbook Series on Semiconductor Parameters, World Scientific, (1999)
    [37] M. Passlack et al., Applied Physics Letter, 68, 8, 1099, (1996)
    [38] M. Passlack et al., IEEE Transactions on Electron Devices, 214, (1997)
    [39] M. Hong et al., Science, 283, 5409, 1897, (1999)
    [40] F. Ren et al., Solid-State Electronic, 41, 1751,(1998)
    [41] J. Kwo et al., J. Vac. Sci. Technol. B, 17, 1294 (1999)
    [42] M. Hong et al.,, Appl. Phys. Lett. 76, 312 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE