簡易檢索 / 詳目顯示

研究生: 楊大友
Yang, Da-You
論文名稱: 使用蝕刻技術製造超導量子迴路晶片
Fabrication of superconducting circuit using etching technique
指導教授: 許耀銓
Hoi, Io-Chun
口試委員: 林彥詳
Lin, Yen-Hsiang
吳憲昌
Wu, Cen-Shawn
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 59
中文關鍵詞: 量子量子電腦超導體半導體製程製程蝕刻
外文關鍵詞: Quantum, Quantum computer, superconductor, Semiconductor process, Process, Etching
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文所使用的超導量子位元稱為Transmon,超導材料為鋁,其製作約瑟夫接面(Josephson junction)的方式為Cross junction,使用的電容為指叉式(Interdigital)電容。

    我使用的超導量子迴路晶片是利用半導體製程所製造,利用微影技術使用正光阻定義出圖形,再將鋁蒸鍍在矽晶圓上並利用濕蝕刻製程完成共面波導,透過共面波導我們能夠將微波送入超導量子位元晶片並觀察和控制反應出的現象。利用蝕刻製程所完成的共面波導在金屬邊緣粗糙程度較低,相較於剝離製程這有助於減少background cavity mode也有益於超導量子位元減少pure dephasing。

    設計上共面波導的阻抗為50Ω,而在我的參數製作下共面波導的線寬誤差約1.9%、阻抗約50.68Ω。約瑟夫接面設計線寬190nm,實際結果為247.1nm和275.1nm。


    The superconducting qubit used in this paper is called Transmon, the superconducting material is aluminum, the method of fabricating the Josephson junction is Cross junction, and the capacitor used is an Interdigital capacitor.

    The superconducting quantum circuit chip I used is manufactured using a semiconductor process, using lithography technology to define a pattern using positive photoresist, and then vapor-depositing aluminum on a silicon wafer and using a wet etching process to complete a coplanar waveguide through the coplanar waveguide. We can send microwaves into superconducting qubit wafers and observe and control the reflected phenomena. The coplanar waveguide completed by the wet etching process has less roughness on the metal edge. Compared with the lift-off process, this helps to reduce the background cavity mode and also benefits the superconducting qubits to improve decoherence.

    In the design, the impedance of the coplanar waveguide is 50Ω, and the line width error of the coplanar waveguide is about 1.9\% and the impedance is about 50.68Ω under my parameters. The Joseph junction design line width is 190nm, and the actual results are 247.1nm and 275.1nm.

    Acknowledgements 摘要 i Abstract ii 1緒論 1 2理論背景 3 2.1超導現象中的穿隧現象. . . . . . . . . . . . . . . . . . . . . . . .3 2.1.1約瑟夫效應. . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.1.2直流超導量子干涉元件. . . . . . . . . . . . . . . . . . . . . . .6 2.2超導量子位元. . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.2.1單一庫柏電子對盒. . . . . . . . . . . . . . . . . . . . . . . . .8 2.2.2 Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3實驗方法133.1晶圓製程. . . . . . . . . . . . . . . . . . . . . . . .14 3.1.1 RCA清潔(RCA clean)–清潔矽晶圓表面去除氧化層. . . . . . . . .14 3.1.2電子束蒸鍍–共面波導. . . . . . . . . . . . . . . . . . . . . .16 3.1.3黃光微影–共面波導. . . . . . . . . . . . . . . . . . . . . . .17 3.1.4濕式蝕刻(Wet etching)–共面波導. . . . . . . . . . . . . . . . .22 3.1.5黃光微影–對準記號. . . . . . . . . . . . . . . .. . . . . . . .23 3.1.6電子束蒸鍍–對準記號. . . . . . . . . . . . . . . . . . . . . .27 3.1.7剝離(Lift off)–對準記號. . . . . . . . . . . . . . . . . . . .28 3.2晶片製程. . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.2.1電子束微影–約瑟夫接面與指叉式電容. . . . . . . . . . . . . . .29 3.2.2電漿離子蝕刻(Plasma etching)–約瑟夫接面與指叉式電容. . . . . .31 3.2.3電子束蒸鍍–約瑟夫接面與指叉式電容. . . . . . . . . . . . . . .32 3.2.4剝離(lift off)–約瑟夫接面與指叉式電容. . . . . . . . . . . . .34 4實驗結果35 4.1共面波導製程結果. . . . . . . . . . . . . .. . . . . . . . . . . .35 4.1.1 HF與鋁蝕刻製程結果. . . . . . . . . . . . . . . . . . . . . .35 4.1.2共面波導電子顯微鏡觀察結果. . . . . . . . . . . . . . . . . . .38 4.2對準記號製程結果. . . . . . . . . . .. . . . . . . . . . . . . . .41 4.2.1光阻顯影結果. . . . . . . . . . . . . . . . . .. . . . . . . . .41 4.2.2蒸鍍與剝離製程結果. . . . . . . . . . . . . .. . . . . . . . . .45 4.3晶片製程結果. . . . . . . . . . . . . . . . . . . . . . . . . . .47 4.3.1約瑟夫接面與指叉式電容電子束微影結果. . . . . . . . . . . . . .47 4.3.2約瑟夫接面與指叉式電容電子束蒸鍍結果. . . . . . . . . . . . . .50 4.3.3約瑟夫接面與指叉式電容電子顯微鏡觀察結果. . . . . . . . .. . . .52 5結論57 5.1未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 參考文獻59

    [1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical
    Physics, pp. 467–488, 1982.

    [2] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum information,” Cambridge
    University Press, p. 15, 2000.

    [3] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters,
    pp. 251–253, 1962.

    [4] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum
    states in a single cooper pair box,” Nature, pp. 786–788, 1999.

    [5] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, “Quantum interference effects
    in josephson tunneling,” Phys. Rev. Lett., pp. 159–160, 1964.

    [6] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Chargeinsensitive qubit design derived from the cooper pair box,” Phys. Rev. A., p. 042319, 2007.

    [7] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.S.
    Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature., pp. 162–167, 2004.

    [8] T. Duty, D. Gunnarsson, K. Bladh, and P. Delsing, “Coherent dynamics of a josephson charge qubit,” Physical Review B, p. 140503, 2004.

    [9] K. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf, “Measurement of the excited state lifetime of a microelectronic circuit,” Phys. Rev. Lett., p. 027002, 2003.

    [10] K. Zhang, M.M. Li, Q. Liu, H.F. Yu, and Y. Yu, “Bridgefree
    fabrication process for al/alox /al josephson junctions,” Chin. Phys. B, p. 078501, 2017.

    [11] C. M. Quintana, A. Megrant, Z. Chen, A. Dunsworth, B. Chiaro, R. Barends, B. Campbell, Y. Chen, I.C. Hoi, E. Jeffrey, J. Kelly, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M.
    Martinis, “Characterization and reduction of microfabricationinduced
    decoherence in superconducting quantum circuits,” Phys. Rev. Lett., vol. 105, p. 062601, 2014.

    QR CODE